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1 Introduction

Near Infrared Spectroscopy (NIRS) allows noninvasive monitoring of tissue oxygena-
tion and cerebral haemodynamics. It is particularly well suited to young develop-
mental populations from birth to toddler years [17]. NIRS can be used to measure
in vivo changes oxygenated haemoglobin (A[HbOs]), deoxygenated haemoglobin
(A[HHD]), and oxidised cytochrome-c-oxidase (AJoxCCO]), an enzyme in the mito-
chondria associated with tissue metabolism [2].

NIRS has good spatial and temporal resolution, and EEG has excellent temporal
resolution. They can be used simultaneously because these modalities have no influ-
ence on each other. Consequently, combined measurements may provide additional
information about electrical activity as well as local haemodynamics. This multi-
modal approach has the potential to improve clinical neuromonitoring of preterm
and term infants [41].

As part of a collaboration between UCL Medical Physics and Great Ormand
Street Hospital, London, in vivo brain tissue changes in oxygenation, metabolism,
and electrical activity data was collected from Patient 04, a 2.5 year old patient
having an epileptic episode.

The aims of this report are to explore the data, apply computational methods
to EEG and NIRS measurements in the time and frequency domains to investigate
neurovascular and neurometabolic coupling during seizures, and provide a basis for
hypothesis generation. It is hoped that by identifying and quantifying how responses



change over time and their interrelationships, it will be possible to increase our
understanding of the mechanisms that drive seizure activity. Then NIRS data could
be used more reliably for seizure prediction, detection, monitoring conditions during
and after seizure events, and provide more information about patient health.

2 Background

2.1 Electroencephalography (EEG)

Epileptogenesis causes functional, structural, or network reorganization changes in
the brain that may lead to recurring epileptic seizures [22]. FEach seizure results
from the abnormal electrical discharge of brain cells. They are associated with
high-amplitude EEG spikes, and individual spikes often punctuate the scalp EEGs
between attacks [7], but Diagnosis is difficult due to their diversity and complexity.
Some take the form of convulsions, while others involve subtle changes in mood,
thought, or behaviour. Furthermore, there are many possible causes, including
viruses, neurotoxins, tumours, head trauma, and genes [5]. Some cases have been
linked to faulty inhibitory synapses (GABAergic) that cause many localized neurons
to fire in synchronous bursts [10]; such bursts are rare in normal brains [13].

Diagnosis has traditionally relied heavily on EEG data. In fact EEG revolution-
ized the entire field of epileptology, and it remains essential to the diagnosis and
study of epilepsy and seizures because of its temporal resolution, ease of application
and the nature of epileptic conditions themselves [30, Chapter 13]. It is the gold
standard in the diagnosis of epilepsy. It measures the electrical activity generated by
a large population of hyper-synchronised neurons, mainly localized near the surface
of the cortex [42], but small-scale and asynchronous activity is difficult or impossible
to measure [8].

2.2 Near Infrared Spectroscopy (NIRS)

2.2.1 NIRS can detect changes in [HbO,], [HHb], and [oxCCO)|

Work on functional NIRS (fNIRS) using HbO, and HHb as indicators of the haemo-
dynamic response to neuronal activity has been very substantial since first presented
in 1993 due to its many advantages. NIRS is silent, less costly and less susceptible
to movement artifacts than other methods [17, 33]. fNIRS is the only noninvasive,
in vivo method that can assess oxygen consumption during functional tasks [2], and
it can measure the CCO signal, which is more brain specific than the haemody-
namic signals and, therefore, can indicate cerebral metabolism during neurovascular
coupling more directly [23].

For example, the CCO signal response to reduced oxygen delivery in the healthy
human brain was examined in [39]. Arterial oxygen saturation was reduced from
baseline levels to 80% in eight healthy adult humans. At the nadir of hypoxemia the
median changes were as follows: A[oxCCO]| decreased by 0.24 M, total haemoglobin
concentration increased by 2.83 uM, and the change in haemoglobin difference con-
centration (A[HbD] = A[HbO,] - A[HHb]) decreased by 12.72 M [39].



2.2.2 Broadband NIRS uses more wavelengths to extract more informa-
tion

An increase in neuronal spiking leads to an increase in cerebral blood flow due to
neurovascular coupling, and measurable changes in the local [HbO,] and [HHb] [44].
NIRS calculates changes in concentration from the changes in the light attenuation
in tissue. The proportions of light absorbed, scattered, and transmitted depend on
the properties of the medium and the light. Absorbance can be described by the
modified Beer—Lambert law

Az—log(jio):(cxekxlxDPF)+G (1)

where A is absorbance, [ is intensity of transmitted light, I is intensity of incident
light, ¢ is concentration of medium, €, is the molar extinction coefficient character-
istic of the medium for light with wavelength A, and [ is distance the light travels in
the medium, DPF is the differential pathlength factor and G is the scatter. Scat-
ter is constant and cancels out when changes in chromophore concentrations are
calculated over two time points [17].

Calculating and validating changes in haemoglobin (Hb) is easy because its con-
centration in tissue is high, but the signal from CCO is about 5% to 10% as large
as haemoglobin’s. So light attenuation changes due to CCO can easily be masked
by the much larger attenuation changes due to HbO, and HHb, i.e. cross-talk [2].

Using more wavelengths tends to reduce cross-talk and noise. The gold stan-
dard for broadband NIRS systems requires 780 to 900 at 1 wavelength resolution.
However, the aim is to resolve the shape of the oxidised-reduced CCO spectra and
disentangle it from the other chromophores. Arifler et al. [1] found that the opti-
mum eight wavelengths were 784, 800, 818, 835, 851, 868, 881, and 894, as in Figure
1.

Optimum wavelength combinations suggested by Arifler et al.
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Figure 1: Optimal wavelength combinations. Image: [1].

The algorithm, determination of chromophore absorption spectra, estimation of
the optical pathlength, and number and choice of wavelengths should reduce the
impact of artifacts [2]. Broadband NIRS and the UCLn algorithm can accurately
resolve spectral changes due to oxCCO without cross-talk from the haemoglobin
chromophores [26].

Using Equation 2, changes in chromophore concentrations were calculated from
measured changes in broadband NIR light attenuation using the modified Beer-
Lambert law as applied with the UCLn algorithm [4]. This algorithm is a least-
squares fitting procedure based on multiple regression analysis designed to determine
the best fit of the chromophore extinction coefficients € to the measured attenuation
changes AA over n of wavelengths A:
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The UCLn algorithm was used to solve for changes in the chromophore concentra-
tions across 136 wavelengths [4].

In [4], Bale et al. presented a novel lens-based broadband NIRS system, the
“CYtochrome Research Instrument and appLication” (CYRIL). This system was
developed to simultaneously measure cerebral changes in tissue oxygenation and
haemodynamics indirectly by estimation of the changes in [Hb] and utilisation of
oxygen via the measurement of the oxidation state of CCO. A lens-based system
was chosen because they have a higher throughput of light than mirror-based spec-
trographs. This system used a grating that provided a wavelength resolution of
0.27nm #+0.70nm and 136nm bandwidth. It was mounted on a platform and rotated
to set the range of wavelengths to resolve. The 770nm-906nm range was chosen [4];
oxCCO is a strong absorber at 830nm [40]. After diffraction at the grating, the light
was focused onto the charge coupled device (CCD detector) with an /2 focusing
lens. Focusing the light in the y-direction reduces cross-talk between the detector
channels[4].

In [2], Bale et al. presented a new multichannel broadband NIRS (bNIRS)
system. It can measure changes in light attenuation of 308 NIR wavelengths (610nm
to 918nm) and quantify the A[HbOs], A[HHb] and AJoxCCO] simultaneously over
16 different brain locations.

2.2.3 Broadband NIRS can detect seizures and monitor patients

Near-infrared spectroscopy (NIRS) measurements of CCO have the potential to
yield crucial information about cerebral metabolism [2], especially if CCO is a more
brain-specific marker of functional activation [11].

Seizures are common following hypoxic-ischemic brain injury in newborn in-
fants, and prolonged or recurrent seizures may exacerbate neuronal damage in the
developing brain. CCO is responsible for more than 90% of ATP production inside
mitochondria and is a potential biomarker. Using a broadband NIRS system, Mitra
et al. measured the changes in AjoxCCO]) and haemodynamics during recurrent
seizures following hypoxic-ischemic encephalopathy in a newborn infant [28]. They
made several observations:

1. A rapid increase in AJoxCCO] at the onset of seizures together with a rise in
the baseline of amplitude-integrated electroencephalogram.

2. Cerebral oxygenation and cerebral blood volume fell shortly before seizure
onset, then recovered rapidly during seizures.

3. A[oxCCO]| during seizures correlated with changes in mean EEG voltage,
which implies an increase in neuronal activation and energy demand.

4. Progressive decline in the AfoxCCO] baseline during seizures implies a pro-
gressive decrease of mitochondrial oxidative metabolism [28].



Bale et al. demonstrated that a strong relationship between cerebral metabolism
(broadband NIRS-measured CCO) and cerebral oxygenation was associated with
unfavourable outcome of newborn brain injury. This was probably due to a lower
cerebral metabolic rate and mitochondrial dysfunction in severe encephalopathy [3].

3 Methods

The HR can be modeled by a gamma function [6], as in Figure 2. The haemodynamic
response is slow [37]. Typical fMRI temporal resolution ~2 seconds (s), and typical
spatial resolution is ~3mm?3.
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Figure 2: BOLD haemodynamic response function: the gamma function can model
the HR. Response timing: ~2s delay, 4-6s to peak, up to 20s back to baseline.
Image: [6].

3.1 Computer Software

[ used Matlab R2018b, [https://uk.mathworks.com|, for all computation and plots.
Matlab function names are in this font name.

3.2 EEG and NIRS maps

Figure 3 shows the NIRS channel locations. Figure 4 shows the EEG electrode
locations; the available locations of interest are circled in green, F4, C4, and F3
and C3. Note: the mapping from electrode number — electrode location name was
confirmed by inspecting the Matlab data structure eeg_details.label and the EDF
header data structure header.label.

The following NIRS—EEG pairs of proximate locations were used for data anal-
ysis in this report.

e Right side of head: R1—F4, R2—F4, R3—C4, R5—CA4.


https://uk.mathworks.com

e Left side of head: L1—F3, L2—F3, L3—C3, L4—C3.

detector
source

(a) Left: L1, L2, L3, L4 (c) Right: R1, R2, R3, R5

Figure 3: NIRS data was recorded from eight locations: (a) L1, L2, L3, L4 over the
left temporal lobe, and (¢) R1, R2, R3, R5 over the right temporal lobe. Images:
modified from Isabele de Rover, UCL.

Figure 4: Surface map of EEG electrode locations. The four available locations
closest to the eight NIRS channels in this report are circled in green. Image: modified
from https://openi.nlm.nih.gov.

3.3 EEG data and seizure annotations

From this patient’s history, the EEG was difficult to annotate due to constant pathol-
ogy even between seizures. Nonetheless, the neurophysiology consultant identified
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seizure onset and offset times. These times are used for all data analysis.

This data includes 17 generalised seizures. Seizure lengths were much more
variable that the time between seizures. Mean seizure length 81.71 seconds (s),
standard deviation 36.88s. Mean time between seizures 103.25s, standard deviation
15.81s.

Length of seizures
140 T 140

Inter seizure intervals

time (s)

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16
seizure number interval number

(a) (b)

Figure 5: Seizure statistics: (a) seizure lengths: mean 81.7s, standard deviation
36.88s, (b) time between seizures: mean 103.25s, standard deviation 15.81s.

3.4 Data Filters

3.4.1 EEG filters and artifact removal

The correct use of filters provides one of the major sources of contention among
electroencephalographers and technologists [30, p149]

e The EEG data was sampled at 256Hz in units of mV.

e The EEG data might have been filtered by hardware, e.g. a broad bandpass
filter.

All filters were constructed from second order Butterworth filters and the filtfilt
function to zero phase filter the data.

Typical high-pass filter cut-offs are in the 0.5 to 1Hz range. They filter out slow
artifacts, such as electrogalvanic signals and movements [30]. Typical low pass filter
cut-offs are in the 35 to 70Hz range. They filter out high-frequency artifacts, such
as electromyographic signals [30].

I applied two filters in a cascade: low pass with a 35Hz cut-off, then a high pass
with a 0.5Hz cut-off. The low pass filter was applied first to promote filter stability.

The remaining 50Hz artifact was removed by a stopband filter with cut-off fre-
quencies 50Hz + 0.3

Next remaining large artifacts were identified according to two thresholds. A
high threshold was used for detection; a low threshold was used for extension. Each
artifact detected by the high threshold was extended to neighboring points greater
than the low threshold ( ~66% of the high threshold).

The artifact data points were set to not a number (NaN) to mark those values
as missing, then missing values were interpolated with interpl function using the
default linear method.



The high threshold T for each EEG trace was defined as a multiple of each trace’s
median absolute deviation, which is robust to extreme values [34]. T was calculated
using Equation 3

_ median| X|

T=Mx o
X0 0.6745 (3)

where M = 15 is the multiplier, o is the median absolute deviation, |X| is the
absolute value of the filtered data, and the denominator 0.6745 is derived from the
inverse of the cumulative distribution function for the standard normal distribution
evaluated at 0.75 [35]. In other words, the area under the curve left of 0.6745
standard deviations equals 0.75.
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Figure 6: EEG not filtered by software.
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EEG Filtered by Software
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Figure 7: EEG filtered and artifacts removed.
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3.4.2 NIRS filters

A common practice in fNIRI signal processing is to band-pass or low-pass filter the
signals to remove non-evoked components using a 0.2Hz cut-off frequency [36]. To
remove low frequency drift and cardiac oscillations data can be band-pass filtered
with, for example, a third order Butterworth filter between 0.01 and 0.5Hz [9] (origi-
nal sampling rate was 25Hz). The NIRS data described in [15] was bandpass filtered
between 0.02-0.5Hz.

The NIRS data was sampled at 0.5Hz, interpolated to 1Hz. The unfiltered data
in Figures 8, 10, and 12 show a slow drift, especially for some channels. I used a
high pass filter with a 0.02Hz cut-off, but a ~0.005Hz cut-off might be preferred to
preserve more of the very low frequency changes. Filtered data is in Figures 9, 11,
and 13.

Nonetheless, filtering had little impact on the NIRS results. For example, 17
spikes that correspond to 17 seizures recorded at NIRS channel R3 are obvious in
both Figures 8 and 9.
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Unfiltered NIRS
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Figure 8: Unfiltered NIRS A[HbO,] per location.
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Filtered NIRS
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Figure 9: Filtered NIRS A[HbO,] per location. Note the different scales.
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Unfiltered NIRS
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Figure 10: Unfiltered NIRS A[HHb] per location.
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Filtered NIRS
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Figure 11: Filtered NIRS A[HHDb] per location. Note the different scales.
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Unfiltered NIRS
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Figure 12: Unfiltered NIRS AJoxCCO] per location.
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Filtered NIRS
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Figure 13: Filtered NIRS AJoxCCO] per location. Note the different scales.
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3.5 NIRS waveform extraction

All waveform extractions were based on 17 seizure detection times. They were
averaged to produce a mean waveform of the same length for each channel, Some
waveforms were peak aligned first to produce a mean waveform for each channel
with a higher and sharper peak.

The seizure/peak aligned waveforms are in Section 4.6.1. The algorithm for
peak alignment was as follows. For each channel and for each seizure, each of the
five waveforms were peak aligned relative to the after detection time window. The
waveforms that peaked before the mid point of the time window (40s after detection,
inclusive) were shifted left by negative seconds, waveforms that peaked after the mid
point were shifted right by positive seconds. The mean and standard deviation of
the shifts, in seconds (rounded), for each waveform are in Table 1.

3.6 FFT and spectrograms

FFTs were generated with £ft, and spectrograms were generated with spectrogram
using parameters [128,120,128, 256, ’yaxis’]. Yellow colours indicate frequency
content with relatively high power.

3.7 Decimation

EEG data was decimated from 256Hz down to 1Hz with the decimate function
using the default eighth-order lowpass Chebyshev Type I filter. However, decimate
also greatly reduces the amplitude of the data. Figure 14 shows a side by side
comparison.
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EEG: filtered data
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Figure 14: EEG data (a) filtered, (b) filtered and decimated. Note the different
scales.

3.8 Correlation

Pearson correlation coefficients (p) were computed with corrcoef, it uses the equa-

tion i ﬁi <A¢—MA> <Bi;B,UB)‘ (4)

o
i=1 A

where p and ¢ are the mean and standard deviation of their respective variables,
and p is a measure of the linear dependence of the two variables A and B.

In Section 4.5, unfiltered and filtered EEG was correlated with filtered NIRS
A[HbO,| by correlating the area under the smoothed absolute EEG curve per sec-
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ond with NIRS A[HbO,] per second:

eeg = smooth(abs(decimate(eeg-data, 256)), 30) (5)
nirs = smooth(nirs_data, 30) (6)
p = corrcoef(trapz(eeg),nirs), (7)
(8)

where the EEG window was phase shifted by 21s or 36s + {1,2} seconds of jitter,
and the NIRS window was phased shifted by 16s (after detection). Data window
was 13s.

In Sections 4.6.3, 4.6.4, and 4.6.5, EEG data was decimated down to 1Hz, then
the absolute value (abs) of this data was correlated with NIRS data. Data window
was 40s.

For all figures each correlation p was performed relative to a seizure detection
time and set to zero when not statistically significant, i.e. p-value was > 0.05.

3.9 Principal component analysis

The aim of principal component analysis (PCA) is to represent the d-dimensional
data in a lower-dimensional space that best expresses the variation in a sum-squared
error sense. For example, PCA might reduce 40 features to 3 principal components
that account for over 80% of data variance. Ideally, a domain expert can suggest
the number of components ahead of time, as is the case with clustering [38].

PCA was applied to the NIRS data. In general, given data recorded from the
8 locations of interest, 136 data segments relative to the 17 seizure detection times
was stored in a 2D matrix M with 136 rows.

Algorithm 1 shows the code used for PCA and clustering. Set the percent of
variance, construct the covariance matrix with cov, do eigenvalue decomposition
with eig, sort eigenvalues, find minimum number of dimensions N that account for
a user defined percent of variance (80% in this case), extract the minimum number
of eigenvectors, and project the data M (waveforms, for example) onto a lower
dimensional space using matrix multiplication.

After PCA the N principal components (PC) of each waveform were clustered
by kmeans into k clusters using the distance metric squared euclidean distance; the
best set of clusters out of 20 replicates were returned by the kmeans function where
each replicate used different initial random centroids. The returned cluster numbers
are in the same order at the corresponding waveforms.

Data: time series

Result: dimension reduction and clustering of waveforms

pct=0.80;

C = cov(M);

[V,D] = eig(C);

[eigen_values, eigen_value_indices| = sort(diag(D), ‘descend’) ;

N = find((cumsum(eigen_values) /sum(eigen_values)) > pct,1);

V_low = V(:,eigen_value_indices(1:N)) ;

PC =M * V.ow;

cluster numbers = kmeans(PC, k, 'Distance’,’sqeuclidean’,’Replicates’,20);

Algorithm 1: Code for principal component analysis and k-means.
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3.10 K-means clustering

K-means [25] is an algorithm for finding structure in multidimensional data sets
[24]; it is a form of unsupervised learning [21]. Although simple and proposed over
50 years ago, it is still popular and widely used [20]. Essentially, k-means clusters
similar objects together based on a distance metric, e.g. Euclidean distance. This
is the straight line distance between the features of each waveform and the features
of the nearest centroid.

In this paper, clustering starts with a matrix of 136 waveforms recorded from all
locations, either EEG electrodes or NIRS channels. The waveforms were extracted
from time series data relative to the seizure detection time. They vary in shape
and amplitude. The k-means clustering algorithm grouped waveforms with similar
features (principal components) together based on the Euclidean distance metric.
Since the true number of clusters is not known, the number of clusters must be
estimated.

In general, compact and well separated clusters score high for quality [20].
kmeans and eva functions use various metrics to estimate the optimal number of
clusters, but the final choice of k still depends on domain expertise. The number of
clusters k£ was set to 8, 4, and 2 to show the 136 clustered waveforms at various level
of granularity and evaluation but, based on domain expertise and space limitations,
figures showing k=8 and k=4 have been omitted from this report.
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4 Results

4.1 FFTs of EEG traces from each electrode

FFT of EEG traces
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Figure 15: FFT of filtered EEG traces.
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4.2 Spectrograms of EEG traces from each electrode

Spectrogram of EEG
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Figure 16: Spectrograms of EEG traces. Seizures are indicated by the bright yellow
patches along the horizontal axis.

24



4.3 FFTs of NIRS A[HbOs] from each channel

FFT of filtered NIRS HbO channels
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Figure 17: FFT of NIRS A[HbO,]. data per channel. The very low frequencies
have been filtered out.

4.4 Spectrograms of NIRS A[HbO;] and A[oxCCO] from
each channel

Figures 18 to 21 show spectrograms for the NIRS A[HbOs]|; the very low frequencies
were filtered out.
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Spectrogram of NIRS A[HbO_] per channel

]

R5

400

Freq (mHz)
[a]
o
o

bk Lal 4 il b

0
01 02 03 04 05 06 07 08 09 1
Time (hrs)
L4

400
N
I
£
g 200
o

01 02 03 04 05 06 07 08 09 1
Time (hrs)

: m
0

01 02 03 04 05 06 07 08 09

Freq (mHz)
[ne]
o
o

Time (hrs)
400
|
I
£
5200
L
0
. 04 05 0.7 08 09
Time (hrs)

Figure 18: Spectrograms of NIRS A[HbOs,].
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Spectrogram of NIRS A[HbO_] per channel
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Figure 19: Spectrograms of NIRS A[HbOs,].
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Spectrogram of NIRS A[oxCCO] per channel
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Figure 20: Spectrograms of NIRS A[oxCCO].
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Spectrogram of NIRS A[oxCCO] per channel
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Figure 21: Spectrograms of NIRS A[oxCCO].
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4.5 EEG seizure waveforms correlate with NIRS

Mean unfiltered EEG before and after seizure detection

c4
T T T T T T
0.05
=
E o0
_005 1 1 1 1 Il 1
20 40 60 80 100 120 140 160
c3
0.1 . . .
T 0 oA S oA
_0‘1 1 1 1 1 Il 1
20 40 60 80 100 120 140 160
F3
0.05F T T T T T T
O Byl hanea o
E-005F
011 | | | | |
20 40 60 80 100 120 140 160
F4
0.05 '
z 0
-0.05 . . ‘ .
20 40 60 80 100 120 140 160
time (s)

Figure 22: Mean unfiltered EEG before and after seizure detection (red line) per
electrode location, 256Hz.

Correlation of A[HbOz] at L2 with AUC |EEG| at F3
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Figure 23: Correlation p of EEG at F3 with NIRS A[HbO,| at L2. Unfiltered
EEG data, decimated to 1Hz, smoothed, each window phase shifted +21s + {1,2}s,
window 13s, relative to detection time (red line).
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Figure 24:

Mean filtered EEG before and after seizure detection

c4
005 T T T T T T
]
-0.05 1 1 1 1 L 1
20 40 60 80 100 120 140 160
0.05
0
-0.05 L L
20 40 60 80 100 120 140 160
F3
0.05
D ™) b e ol U of
-0.051
-0.1 1 1 1 1 1
20 40 60 80 100 120 140 160
F4
0.04f '
0.02
0
-0.02p 1 1 1 1 1 1
20 40 60 80 100 120 140 160
time (s)

Mean filtered EEG before and after seizure detection (red line) per

electrode location, 256Hz.
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Figure 25: Correlation p of EEG at F3 with NIRS A[HbO,] at L2. Filtered EEG
decimated to 1Hz, smoothed and each window phase shifted +36s + {1,2}s, window
13s, relative to detection time (red line).
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4.6 Mean NIRS seizure waveforms per channel

4.6.1 Mean peak aligned waveforms after seizure detection

For each channel and for each seizure, the five NIRS waveforms were peak aligned
relative to the after detection time window. Waveforms that peaked before the
mid point of the time window were shifted left by negative seconds, waveforms
that peaked after the mid point were shifted right by positive seconds. Mean and
standard deviation of the shifts, in seconds (rounded), for each waveform are in
Table 1, waveforms are in Figures 26 to 29.

| [ A[HbO,] [ A[HHDB] [ A[HbT] | A[HbD] | A[oxCCO] |

il o | K o | K o | W o | K o
R5 | -2 417 3]0 42 4]-3 4
L4 -3 413 502 44 7[-8 5
L2 | -2 415 41 2] 4[-3] 4]-1 3
R1[-3 A7) 4l 2] 53] 4|5 3
L3 [ -4 414 6[-1] 8[-3] 4]-6 6
R3 | -3 415 502 5[-2] 4]-6 4
L1][-2 415 Al 1] 4]-3] 4]0 4
R2[ 1] 1w0|7] 3|7 82| 7|5 3

Table 1: Wave alignment: p is the mean number of seconds (rounded) the waveforms
were shifted to align their peaks. Waveforms that peaked early were shifted left by
negative seconds, waveforms that peaked late were shifted right by positive seconds.
o is the standard deviation of the shift values.
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Figure 26: Mean peak aligned A[Hb] and AJoxCCO] after detection.
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Figure 27: Mean peak aligned A[Hb] and AJoxCCO] after detection.

34



conc (pM)

cong (M) conc (M) conc (pM)
NO N =T SIS NO N

ANOMNAED

conc (pM)

N O N B

Mean of 17 seizures at L3

A[HbO,]
10 20 30 40

A[HHb]
10 20 30 40

A[HBT]

10 20 30 40
A[cCO]

time (s)

(a)

Figure 28: Mean peak aligned A[Hb] and AJoxCCO] after detection.
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Figure 29: Mean peak aligned A[Hb] and AJoxCCO] after detection.
4.6.2 Mean seizure detection aligned changes in [Hb] and [oxCCO]

Figures 30 to 33 show mean detection time aligned waveforms. Each waveform is
the mean for the 40s after 17 detection times per channel.
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Figure 31: Mean detection aligned A[Hb| and A[oxCCO)] after detection.
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Figure 33: Mean detection aligned A[Hb| and A[oxCCO)] after detection.

4.6.3 Correlation of each EEG with all NIRS channels before and after
seizure detection

The bar charts in Figures 34, 35, 36, 37 show the correlation of four EEG traces with
A[Hb] and AJoxCCO] at each NIRS channel during 40s before and after detection.
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Before detection correlation of EEG F3 with NIRS 4 After detection correlation of EEG F3 with NIRS
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Figure 34: Correlation of EEG F3 with NIRS at eight locations.
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Before detection correlation of EEG F4 with NIRS

After detection correlation of EEG F4 with NIRS
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Figure 35: Correlation of EEG F4 with NIRS at eight locations.
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Before detection correlation of EEG C3 with NIRS

After detection correlation of EEG C3 with NIRS
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Figure 36: Correlation of EEG C3 with NIRS at eight locations.
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Before detection correlation of EEG C4 with NIRS 4 After detection correlation of EEG C4 with NIRS
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Figure 37: Correlation of EEG C4 with NIRS at eight locations.
4.6.4 Correlation of each EEG with a proximate NIRS channel

Figure 38 shows the correlation of each EEG with proximate NIRS channels 40s
before and after seizure detection.
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1 Before Detection Correlation of Paired EEG with NIRS 4 After Detection Correlation of Paired EEG with NIRS
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Figure 38: Correlation coefficients of each EEG with proximate NIRS channels.

4.6.5 Correlation of A[Hb] with A[oxCCO] before and after seizure de-
tection

Figure 39 shows the correlation of mean A[Hb] with mean AJoxCCO during 40s
before versus after detection.
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Figure 39: Correlation of A[Hb] with AJoxCCO]J at eight NIRS locations.

4.6.6 Correlation of A[oxCCO] with A[Hb] during a sliding time window

In the following figures seizures are indicated by shaded areas.
calculated with a sliding window 30s wide, then smoothed using a 30 second window.

e Figures 40 and 41: correlation of AloxCCO] with A[Hb] at locations R1, R2,

R3 and R5.

e Figures 42 and 43: correlation of AjoxCCO] with A[Hb] at locations L1, L2,

L3 and L4.
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Figure 40: A[oxCCO)] correlation with A[Hb].
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Figure 41: A[oxCCO)] correlation with A[Hb].
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Figure 42: A[oxCCO)] correlation with A[Hb].
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Figure 43: A[oxCCO)] correlation with A[Hb].
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4.7 PCA and clustering of waveforms after seizure detection
times

The haemodynamic response (HR) seen in EEGNIRS studies on ictal data [16,
29, 45] is also seen in this data. Each cluster’s waveform is the mean waveforms
for that cluster. First the dimensions of 136 waveforms were reduced by PCA, then
clustered into k clusters by k-means. The increase of A[HbO,]| is the most striking
feature and is consistent with most studies of newborns [12].

Although k=8, k=4, and k=2 were tried, only the results from k=2 are in the
figures below. This choice was based on domain expertise.

4.7.1 NIRS A[HbO,] waveforms

Figure 44 shows the mean A[HbO,] waveforms for two k-means clusters.

Clustered A[HbOz] Waveforms

cluster 1, count=69, p=0.51 cluster 2, count=67, p=0.49
4 4
2 2
=
2 2
0 10 20 30 40 0 10 20 30 40
time (s) time (s)
(a)

Clustered A[HbOz] Waveforms per Location

[ ciuster 1|
[ cluster 2

count

N
channel location
(b)

Figure 44: K-means clustered waveforms, 40s after detection, k=2.
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4.7.2 NIRS A[HHb] waveforms

Figure 45 shows the A[HHb] waveforms in two clusters. Cluster 1 waveforms domi-
nate R5, R1, L3, and R3.

Clustered A[HHb] Waveforms
cluster 1, count=80, p=0.59 cluster 2, count=56, p=0.41
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Figure 45: K-means clustered waveforms, 40s after detection, k=2.

4.7.3 NIRS A[oxCCO] waveforms

In Figure 46(a) the 136 waveforms are clustered into two groups, which may be
classified as flat and negative responses.
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Clustered A [oxCCO] Waveforms
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Figure 46: K-means clustered waveforms, 40s after detection, k=2: (a) waveforms,
(b) waveform counts at each channel location.
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5 Discussion

5.1 FFTs and spectrograms

The FFT for EEG location F3 had the highest intensity for frequencies below 5Hz,
Figure 15. This is consistent with Figure 16 where the power/frequency (dB/Hz) is
noticeably greater at F3 than at other locations. EEG F3 is close to NIRS channel
L2, so L2 should be under more stress than other areas.

The spectrograms for NIRS A[HbO,] are shown in Figures 18 and 19. The
seizures are distinct at L1, L2, and R3 (the bright yellow patches can be easily
counted). The spectrograms for A[oxCCO] are shown in Figures 20 and 21. Seizures
are distinct at L1 and L2.

While EEG is the gold standard, the seizures are more visible in the NIRS
A[HbOs] spectrograms, and the AloxCCO] spectrograms indicate greater metabolic
demands at L1 and L2. In any event, the spectrograms confirm that NIRS can
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detect seizures, and even the metabolic response by AJoxCCO].

5.2 Mean EEG waveforms

Figures 23 and 25 show, for example, that unfiltered and filtered EEG F3 traces can
be highly correlated with filtered NIRS A[HbO,| at L2. However, the combination
and order in which decimate, abs, smooth, and trapz are invoked can have a large
impact the computed value of p, as can choice of filter, window size, phase shift,
jitter, and various parameters.

5.3 Mean NIRS waveforms

5.3.1 Some individual NIRS waveforms are similar to the classic HRF

The shape of the haemodynamic response function (HRF) for adults is well known,
as in Figure 47, but not for developmental populations [12]. Some results suggest
that the infant HRF is delayed, slower to peak and/or return to baseline than in
adults [27].

—xyHb
—— deoxyHb

Concentration Change

Time (sec)

Figure 47: The typical HRF in adults peaks several seconds after stimulus. Image:
[17].

Figure 48 shows a clip of filtered NIRS data recorded from location L2. Although
on different scales, the haemodynamic and metabolic responses are synchronised
with seizure onsets (start of shaded areas). On average, the A[HbO,] waveform at
L2 peaks about 21s after seizure onset, time from initial dip to peak to second dip are
~9s each. This suggests a tight coupling between the oxygen delivery and oxygen
utilization at this location (in this patient). This is significant because in cases
where brain injury resulted in an unfavourable outcome, the mitochondrial function
was more dependent on oxygenation [3]. Possibly due to lack of buffering capacity.
So, the correlation of AJoxCCO] with A[HbT] and A[HbD] is also significant.
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Figure 48: Filtered NIRS data: A[HbO,|, A[HHb], and AJoxCCO] from L2. Top:
Seizures are indicated by the shaded areas. The y axis scales are different, but the
timing and shape of the response is similar. Bottom: synchronised waveforms, note

the large A[oxCCO)] initial dip.

5.3.2 Peak aligned NIRS waveforms

According to this patient’s history, seizures start in the left posterior region. They
present with fast rhythmic activity which usually evolves into generalised spikewave
discharges in a few seconds. NIRS channels L3 and L4 are closest to the posterior
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area, so the seizures could to spread to them before L1 and L2.

The statistics for the peak aligned waveforms in Table 1 shows that HR at L3
and L4 peaks sooner than at L1 and L2. The 40 second window must be shifted left
by -3 and -4 seconds for L3 and L4, and only -2 and -2 for L1 and L2. On average
seizures reach L3 and L4 ~1.5s before they reach L1 and L2, consistent with the
detection time waveforms in Figures 30 to 33.

5.3.3 Detection aligned NIRS waveforms

In Figures 30, 31, 32, 33 each waveform is the mean of 17 seizures during 40s after
detection time. Onset times are known, so averaging data points is an appropriate
data driven method [33].

For this patient, waveform shape varies substantially between NIRS channel
locations. The A[HbO,] waveform is relatively consistent and usually peaks ~20s
after the seizure detection. Most of these waveforms show a typical HRF shape
including an initial dip before ascending to the peak, and a dip below the baseline
when returning to baseline. The positive increase agrees with the majority of results
reviewed by [12].

The mean A[HHb] waveforms for this patient are not mixed, as expected [12].
An initial increase is not apparent, but they consistently show a typical HR shape
that decreases to a minimum at ~20s followed by an overshoot that peaks at ~90s
when returning to baseline.

While A[oxCCO)] increases to a peak at ~20s, A[HHb] decreases to a nadir at
~20s and, consequently, A[HbD] increases to its peak at the same time. This is
consistent with the HR that NIRS is expected to measure.

Most of the mean A[oxCCO| waveforms are flat. The positive responses at R1
and R2 are very small. But the response of AjoxCCO] at L4 is an increase followed
by a decrease that is negatively correlated with the A[HHb] waveform. L2 is the
only location that has a smooth positive response that is tightly coupled with the
HR.

5.4 Correlation of EEG with each NIRS channel depends
on location

The correlation of EEG with the NIRS channels depends on EEG location. For
example:

e Figure 34(a,b): EEG F3 correlation with AJoxCCO] goes from the most posi-
tive to the most negative.

e Figure 35(b): EEG F4 correlation with A[HbO,] is the most positive, increases
after detection.

e Figure 36(a,b): EEG C3 correlation with A[HHD] is the most negative after
detection.

e Figure 37(a,b): EEG C4 correlation with A[HbO,] is the most positive, in-
creases after detection.

Correlation also depends on one detection time per seizure; some locations will be
out of phase.
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5.5 Correlation of EEG with proximate NIRS channels

If EEG and NIRS are working correctly, then recordings from proximate locations
should be more correlated that recordings from distant locations. Figure 38 showed
the correlation of each EEG with proximate NIRS channels 40s before and after
seizure detection.

The correlation of EEG traces paired with proximate NIRS channels is higher
than with all NIRS channels, as reported in Section 4.6.3, This was supported by
the data in Table 2 where the mean was based on all correlations (regardless of each
statistical significance). For example, after detection paired A[HbO,] p was 0.327,
greater than unpaired p of 0.308, and after detection paired A[HHb] p was -0.214,
greater than unpaired p of -0.197. A[CCO] was the only exception. And the same
pattern holds true for paired versus unpaired correlation before seizure detection.

HbO2 HHb | HbT | HbD CCO
Paired before 0.260 | -0.114 | 0.168 | 0.281 0.267
Paired after 0.327 | -0.214 | 0.117 | 0.306 | -0.031

Unpaired before | 0.216 | -0.101 | 0.140 | 0.241 0.318
Unpaired after | 0.308 | -0.197 | 0.072 | 0.277 | -0.087

Table 2: Mean correlation p of unpaired EEG with NIRS during the 40s before ver-
sus during the 40s after detection. Note: these are means of correlations regardless
of statistical significance.

Correlations p with p-values > 0.5 are shown as zero in the figures, but the
original values were used to calculate the means in Table 2.

However, the correlation of EEG with NIRS also depends on detection time,
window size, and filtering. For example, applying a 15 to 25Hz bandpass filter to
the EEG leads to different results and, hopefully, an answer to a different question.

5.6 Correlation of AloxCCO] with the A[Hb] at each NIRS
channel

In Figure 39, AloxCCO)] is highly correlated with A[HbOs] before detection, but the
correlation is negative at L4 and R2. After detection there is no correlation at R2.
A[oxCCO] is more negatively correlated with A[HHb]| after detection. AjoxCCO)] is
more positively correlated with A[HbD] after detection. In general, this consistent
with the mean waveforms presented in this report.

5.7 Correlation of AloxCCO| with A[Hb] during a sliding
time window may be predict seizures

In Figure 40(b), at R2 AJoxCCO] correlation with A[HbO,| increases greatly until
it reaches a peak at the time of seizure onset. AJoxCCO] correlation with A[HbD)]
shows the same pattern. And the same pattern appears at R5, L1, and L2, Figures
41(b) and 42. Strong relationships between cerebral metabolism and metabolic
metabolism with neuronal activation and energy demand seen in the data indicate
a poor prognosis [3].

A[HbT] also clearly peaks at time of seizure onset at R5, L1 and L2. Correlation
at other locations is not tightly coupled with the HRF, but some spatial variability
is expected.
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5.8 PCA and clustering of NIRS waveforms after seizure
detection

An increase of A[HbOs] has been reported by most studies of newborns [12]. Positive
A[HbOs] waveforms are typical in this data set is their, they tend to peak about
~20s after seizure onset.

Figure 44 showed two clusters: the strong HR’s are in cluster 1 and the weak
in cluster 2 in almost equal proportions. Figure 44(b): strong HR waveforms were
mostly recorded from R5, L2, R3, L1. Locations .4, L3, and R2 were dominated by
weak HRs.

Figure 45 shows the A[HHb] waveforms in two clusters. Cluster 1 waveforms
dominate R5, R1, L3, and R3. This waveform is interesting because it shows an
initial increase.

When the A[oxCCO] data was clustered into 4 waveforms, a very flat response
cluster dominated with 106 members. After clustering into two clusters, 121/136
waveforms were associated with cluster 1, the slightly positive waveform. The cluster
2 waveform shows an increase followed by a decrease, most were recorded from L4.
A sudden increase in AJoxCCO] is consistent mat be expected at the start of a
seizure [28]. The decrease in [oxCCO] indicates hypoxia [39].

While the focus of this report has been on seizures, it should be kept in mind that
neuronal activity is not always the stimulus for the haemodynamic and metabolic
response. Many different stimuli can produce correlations between the haemoglobins
and the cytochrome; stimuli such as hyperoxia, hypoxia, hypercapnia, and so on,
not just seizures [Dr Ilias Tachtsidis, UCL]. Pre-ictal signals may be elicited by
astrocyte or pericyte mediated signaling or local potassium and local neurotrans-
mitter /neuropeptide release [14, 18, 32, 43]. Haemodynamic changes may be influ-
enced by glia (such as astrocytes), which are not directly recorded with standard
electrophysiological methods [31].

6 Future Work

Test the hypotheses generated by this report. This could involve more frequency and
phase analysis. For example, although the EEG correlates with the NIRS data, is the
correlation greater for some frequency bands than other? Does the haemodynamic
and/or the metabolic response resonate differently with some frequency bands? Or,
is the sum of neuronal activity over some time period time the most important
factor? Phase shifting can increase correlation, but what is the question?

A rigorous statistical analysis could be applied to some of the results. It is easy
to present p-values, but they can be misleading. There are many ways to visualise
this data set and many way to compute various correlations and so on, some are
in this report, but many more were excluded for brevity. Many variations of the
methods presented are plausible. So there are many chances to discover the p-values
you want that are not valid [19].

After valid statistical results have been found, those results may be linked to the
physiology. Which brain areas have the best or worst physiology? Which brain areas
are most likely suffer damage in the future? In other words, can the NIRS data really
provide useful information about seizure prediction, detection, monitoring, diagnosis
and prognosis?
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7 Conclusion

The preliminary results reported in this paper support the view that NIRS data can
be used for seizure detection and monitoring conditions before and after seizures.
The NIRS data generally agrees with the EEG data; the mean EEG traces near the
time of seizure detection show features that align very well with features, especially
the peak times, of the A[HbO,] waveforms recorded from proximate NIRS channels.
This was also evident in the spectrograms.

Analysis of the NIRS data showed that the HR depends on local physiologi-
cal conditions, and the peak aligned waveforms suggested that the NIRS data can
confirm the temporal and spatial order in which each seizure spreads.

Prediction is less clear, but the positive correlation of AJoxCCO] with both
A[HbO,| and the oxygenation difference, A[HbOs] — A[HHb], tend to increase to a
peak before seizure onset. Data from patients with highly variable intervals between
seizures is needed to better assess the utility of NIRS for seizure prediction.
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