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Abstract

In contrast to a hippocampal place cell, a grid cell has multiple firing
fields with regular spacing that tessellates the environment with a hexagonal
pattern. Directional grid cells (“conjunctive grid cells”) respond selectively
to head direction and location. The results in this report suggest: (1) A
spike rate map’s centre of mass vector (CoM) directionality is correlated with
preferred head direction (HD) when specific thresholds for gridness, CoM
vector magnitude, and HD vector magnitude are applied. However, simply
increasing the gridness threshold does not increase correlation. (2) Global
grid shifts of all fields contribute more to the magnitude of the centre of mass
vector of a spike rate map than local shifts based on a small number of fields
with high spike rates.

1 Introduction

The hippocampus provides a spatial framework for experience [27]. It receives inputs
via the medial entorhinal cortex (MEC) from regions that encode spatial variables,
such as location and head direction, to update a representation of current position
and heading [12, 13, 21, 29, 35]. While hippocampal place cell firing is different in
different environments, grid cell firing is similar, i.e. the topography of grid firing is
similar between different environments [12].

Early studies of grid cells used rats, but grid cells were soon found in mice [11],
bats [48], monkeys [16], and humans [9, 15, 18]. They appear to be widely conserved
across mammalian evolution [34] and, by implication, critical for survival.

The regular structure of the grid field implicates the grid cell as part of a uni-
versal, path-integration—based spatial metric. They are used to understand relative

position in space [13], but not direction. Head direction (HD) cells are responsive to



direction [30, 31, 44, 45] and like grid cells, they retain their basic firing properties
across environments [34].

Conjunctive cells combine the characteristics of grid cells and HD cells concur-
rently [35]. A subset of the putative grid cell data analysed for this report shows
that directional grid cell firing rates depend on the directional tuning of the cell and
the spatial tuning of the cell, especially after specific thresholds are imposed.

This report presents an analysis of data collected from freely moving rats in a one
meter square environment. The aim is to explore and visualise the data, determine
what usually causes a rate map’s centre of mass to shift, identify the parameters for
the subset of cells that probably are conjunctive grid cells, and to quantify how the

firing rate of these cells depends on location in the grid field and head direction.

2 Background

2.1 Introduction

Circa 1970 John O’Keefe recorded from single neurons in a freely moving rat confined
to a small environment. He discovered “place cells” in the hippocampus ... the firing
of these cells was strongly related to the animal’s location [26]. Unlike grid cells,
place cells do not respond to similar places in different environments. Inputs map
randomly to place cells, so the animal can recognise the same place in the same
environment, and not falsely recognise a similar place in a different environment, an
ability known as pattern separation [49].

In 1978 O’Keefe and Nadel published the influential book “The hippocampus as
a cognitive map” [27] where they argued that place cells are the physiological basis
for the cognitive map hypothesized by Edward C. Tolman in the 1940s. However,
place cells alone are not sufficient for navigation. The animal needs to have a sense
of its relative location and direction, it needs other specialised cells.

Head direction cells were discovered in the dorsal presubiculum by James Ranck
in 1984 [30, 31, 41, 42]. They are found throughout most layers of the MEC, but
they are particularly abundant in the presubiculum [36].

Other cell types were also found in the entorhinal cortex. Grid cells were discov-
ered by the Moser lab in 2004-2005 [12, 13], followed by the discovery of boundary

vector cells [2], border cells in 2008 [38], and the progressive increase in grid scale



from dorsal to ventral MEC in the same year [5]. Speed cells were discovered in

2015 [17].

2.2 Head Direction Cells

Head-direction (HD) cells are a class of spatial cells found in the dorsal presubiculum
and regions connected with the presubiculum, such as the anterior thalamus [30, 40,
41, 43]. In rats, they are abundant in the entorhinal cortex, mostly in layers III and

V, and almost non-existent in layer II [35], as shown in Figure 1.
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Figure 1: Head-direction cells are in layers III, V and VI of the entorhinal cortex.
Image:[35].

They are tuned to fire when the rat’s head points in a specific direction relative
its environment, and as the rat moves the direction vectors are parallel, i.e. they do
not converge on a fixed point. They care about the head’s azimuthal orientation in
the horizontal plane, but not about pitch and roll, body orientation, or movement.
Unlike hippocampal place cells, the preferred direction is independent of location
6, 41].

The firing rate decreases sharply as head direction rotates away from the pre-
ferred direction, which ranges from about 60° to 140° wide, and ~90° on average.

The distribution of peak firing directions across the population of cells is uniform.



2.3 Grid Cells

Grid cells are a type of pyramidal neuron that responds to relative location inde-
pendent of external sensory cues and the specific environment; they are found in
the entorhinal cortex [12] and exist in all principal layers of the MEC, an area of

neocortex adjacent to the hippocampus, as shown in Figure 2.
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Figure 2: Grid cells exist in all principal cell layers of the medial entorhinal cortex.
Image:[35].

When these cells were recorded in larger environments, a pattern emerged: their
firing fields formed tessellating hexagonal grids of equilateral triangles [13]. Grid
cells are defined by such periodic firing fields; this property can be quantified by a

metric known as “gridness”.



2.3.1 Gridness

Gridness is a measure of spatial periodicity. The spatial autocorrelation pattern of
a grid cell tends to have a 60° rotational symmetry, and the grid pattern will tend
to be anti-correlated with itself when rotated by 30°, Figure 6(b). To obtain the
gridness score, the spatial autocorrelation of the grid pattern was correlated with its
rotated versions at 60° and 120°, while subtracting the correlation with the rotated
versions at 30°, 90°, and 150°. This score was also used with small variations in
[4, 19, 35, 38, 46]. Threshold values for grid cells are typically in the 0.3 to 0.4 range
(on a scale from -1 to 1) [35].

2.3.2 Grid fields

Grid fields differ in terms of spacing, phase, and orientation [13].

e Grid spacing is the typical minimum distance between the centres of two con-
secutive grid fields. Grid cells in the dorsal MEC encode smaller spaces, while

grid cells in the ventral MEC encode larger spaces [5].

e Grid phase is the offset of grid vertices relative to the x and y axes [13]; it can

be defined by the position of a single firing rate peak [10].

e Grid orientation is the orientation (angle) of the grid axes relative to the local
boundaries of the environment. Grid cells of similar spacing tended to have

almost identical grid orientations within the same environment [39].

The properties of cells with grid fields varies with each MEC layer. Layer II
contains the largest density of pure grid cells — their firing rate is not modulated by
direction. Grid cells from deeper layers are intermingled with conjunctive cells [35]
and head direction cells. Layers III, V and VI have cells with a grid-like pattern
that fire only when the animal is facing a particular direction [35].

Cells in the MEC encode information about position and movement [35]. As an
animal moves through space it uses path integration to keep track previous loca-
tions and maintain its sense of position independent of current visual inputs. Path

integration probably depends on grid cells in the MEC [13].



2.4 Conjunctive Grid Cells

Some grid cells, “conjunctive grid cells”, also have HD properties. The proportion
of such cells in the EC depends on the layer, as shown in Figure 3. Most grid cells in
layer II are HD invariant, while those in the deeper layers usually have HD selectivity,
some of which are pure HD cells. The proportion of directionally modulated cells in

the deeper layers is ~70% [35].

c D
- T iy [’
=i ljﬁn‘,l . !
' . . ag | [ f ]I'
.“_ B 503 B ) \/ Cd -
Pl e 11HS 18s
R :"‘1 E": W
L . ‘ b (1] I . | L .
R oo \ | i I-"ﬂ"
[ | st ml lmu-w -..-'KI:,H? 15
g
&H 188
'L“l
&}"" 145

135
E oo, LavErRN 7 LAYER Il r & | |
100 100 // i
T -I?P - |
& §° o e, Cl !-ll'ﬁ; |
—— -] @
& h—g 3 afi® 26Hz 1aHz W
E- £ c.fé;-:a;.:.qq’gﬁ 1% L 125
E <1 T Il:I T T T T ] T T T 1 1
[ A0 1 L
5 LAYER V LAYER VI R
E Ly ;‘.u L] @ |
8 o %%%, - - T 13z
L] » s
0 g o | ¥ I.'
5 |
]

1 a5 08 os 10 15 20
Gridness scone

Figure 3: Conjunctive representation of position and direction. Image:[35].

An important property of HD cells is known as obligatory coupling — the angular
distance between the preferred directions of pairs of HD cells is very resistant to
change. So, after a cue is removed, if the preferred head direction of cell 1 rotates
by ~40°, cell 2 rotates by a similar amount [41, 42].

In Sargolini et al. (2006) they found that during environmental manipulations

cells with different degrees of gridness and directionality always responded as a



coherent ensemble [35], e.g. during the rotation of a polarizing cue card as shown

in Figure 4.

> @
- -

R

4Hz

JHz IHz

Ut i (T
Q ":q-'-\_\_‘-\-""\-\.\_
11Hz FHz
Lz, Fmid T

15Hz l 1238 BHz

WHif Pmih =g

%

S5Hz AHz

Figure 4: Grid cells and HD cells are coupled. Top row: Rate maps for one grid
cell. Rows 2 to 4: polar plots for four representative head-direction cells. Recordings
were made simultaneously in layer VI of MEC after rotation of a polarizing cue card
on the wall of a circular environment. Columns one and three: cue card (red arc) is
in the original position. Column two: cue card is rotated 90°. Image: [35].



The interaction of grid cells with other cell types in the MEC is not clear [35]. The
interactions are probably complex because the the MEC is the hub of a widespread
brain network for spatial navigation [12, 13, 14, 27, 28, 29, 32, 33, 37].

MEC layer II is dominated by grid cells and contains a two dimensional, ensemble-
encoded metric map of relative spatial location [12, 13, 14] that is independent of
the specific environment and the external sensory cues [35]. Grid cells co-localized
with HD cells are in the deeper layers. Conjunctive grid cells are in the deeper layers
of the MEC [35], and in the pre- and parasubiculum [4].

The preferred firing directions of directionally modulated grid cells in rat EC
are aligned with the grids [9]. Figure 5, left panel, shows the firing rate heat map
of a typical ‘conjunctive’ directional grid cell where firing rate is a function of the
rat’s location within a 1 square meter box (red, high firing rate; blue, low rate;
white, unvisited location; peak rate 3.1 Hz). The middle panel shows the spatial
autocorrelogram for this heat map. The right panel shows this cell’s polar firing
rate map. The black arrow indicates mean firing direction. Red lines indicate the

main axes of the grid firing pattern identified from the spatial autocorrelogram.
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Orientation = 32.0°

Figure 5: The mean firing directions of directional grid cells are aligned
with the grid. Left panel shows the firing rate heat map for a ‘conjunctive’ direc-
tional grid cell (red, high firing rate; blue, low rate; white, unvisited location; peak
rate 3.1 Hz). Middle panel shows the heat map’s spatial autocorrelogram. Right
panel shows the polar firing rate map for the same cell, where the black arrow rep-
resents the mean firing direction, and red lines indicate the main axes of the grid
firing pattern identified from the spatial autocorrelogram. Image:[9].



3 Methods

3.1 Data collection and fundamental methods

Data for 112 cell pairs was collected from rats moving freely in a one meter square
environment (31 March 2006 to 16 May 2011). The video/computer methods used
for location tracking are described in [1, Supp.] and in much earlier work, e.g.
[20, 25].

Spike rate maps were created using the method developed by Muller et al. [23].
The environment was binned into 2x2 cm squares, the cell’s firing rate was computed
for each square, then these rates were smoothed with a boxcar algorithm in two
dimensions to generate a heat map for each tetrode cell pair [1, Supp.].

All rate maps in this report use typical heat map colours where shades of red,

yellow, green and blue indicate spike rates from high to low respectively.

3.2 Software

All software for this project was implemented using Matlab 2018b, various toolboxes,

and functions defined in two specialised toolboxes in particular.
1. The Universal_Matlab (UM) toolbox [Barry Lab, UCL].
2. The CircStat toolbox for circular statistics by Philipp Berens [3].

All Matlab functions mentioned will be in this font: function name.

3.3 Cell classification

Figure 6 provides a quick summary of border cells, grid cells, and HD cells. This
report is primarily about cells with grid and direction properties. Two properties
of interest are the cell’s gridness and its Rayleigh vector (mean resultant vector).
Both will be presented in more detail in the next sections.

Figure 6(a) shows a rate map for a border cell, and (b) shows a spatial auto-
correlogram for a grid cell. Figure 6(c) shows a bimodal distribution of grid scores;
the red line at 0.5 is the threshold for grid cells in this case, in contrast a subjective

gridness threshold of 0.3 was used in [1]. Figure 6(e) shows a bimodal distribution
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of Rayleigh vector lengths for cells recorded in the dorsal presubiculum, and the red

line at 0.3 marks the threshold for HD cells.

a -
fo b
> .'. « 5"
YOy
s 1L® "-1
- -

. O
C
" 40
113
“ 3’0
{4 20
a
: 10
[}
: L :
2

[+
[ Ql} 0?* 0'53 G"b \Q'

-0.4 o 04 0.8 1.2
gridness vector length

Figure 6: Cell type classification: (a) border cells fire near a border regardless of
environment, (b) calculation of gridness is based on the spatial autocorrelation of
the original spatial firing pattern with rotated versions, (c) typical distribution of
gridness scores, (d) calculation of Rayleigh vector length, (e) distribution Rayleigh
vector lengths for cells recorded in the dorsal presubiculum. Image:[8, p114].

3.4 Grid properties

I used the Universal Matlab functions xPearson(smooth rate map) to compute
spatial autocorrelation (sac) of the rate map, and multigridness(sac) to compute
the standard gridness score, same as in [13]. Gridness was computed using the
method described in [1, Supp.] where cells with scores 0.3 or greater were classified

as grid cells.

3.5 Centre of Mass

Figure 8(a) shows a spike rate map and its centre of mass (CoM) vector. The CoM

for each spike rate map was calculated using the following Matlab script

11



x = l:size(rate_map, 2); % Columns.
y = l:size(rate_map, 1); % Rows.
[X, Y] = meshgrid(x, y);

mean_m = nanmean(M(:));

mean_x = nanmean(M(:) .* X(:)) / mean_m;

mean_y = nanmean(M(:) .* Y(:)) / mean_m;

Figure 7: The script for calculating the CoM.

where rate_map is a matrix and the Cartesian coordinate (mean_x, mean_y) is at

the centre of the map.

3.6 Place by direction sampling bias correction (PxD)

If a neuron is directional, then in a small arena its firing will be spatially inhomoge-
neous [7, 22]. But not every head direction can be equally sampled in every location,
and spikes will tend to accumulate at locations where the animal is able to look in
the cell’s preferred HD. In this case, it is necessary to normalise spike rates [6].

To eliminate the effect of uneven directional sampling of directional cells, I used
pxd to generate spike rate maps. The function pxd is based on the maximum likeli-
hood factorial model (MLM) [6]; it provides an estimate of unbiased spatial firing.

Figure 8(b) shows a spike rate map and its CoM vector after PxD correction.

3.7 Place Fields

Figure 8(c) shows the PxD corrected spike rate map for one cell recorded by tetrode
3 (from rat 214) after it was partitioned into seven place fields numbered 1 to 7 by
the fs_findFields function. Watershed field boundaries are clearly delineated in
Figure 8(d).

In this example, T projected the seven field centres onto the blue CoM axis
line; the orthogonal projection points are represented by magenta stars. The mean
projection point is marked by a white X, which is left of centre. The original CoM
vector line is red and points left.

The field centres are the peak rate bins for each watershed field, and their mean
projection point on the CoM axis is an unweighted mean of the projection points,

which may indicate a shift of the entire grid as opposed to a locally weighted shift

12



of the CoM due to one or two fields with many spikes, which could imply that the
grid is asymmetric and/or heterogeneous. For example, in Figure 8(c), the entire
grid has shifted to the left and the large number of spikes in field 2 (bright yellow)
has moved the CoM left and down. So, the grid for this cell is asymmetric and

heterogeneous, i.e. very responsive to one particular place x HD combination.

21403101: t=3, c=1, spikes=379

CoM CoM (PxD)
181.47, ||d||=9.3 187.29, ||d||=5.3

(a) (b)

Place fields (PxD) Watersheds (PxD)

(c) (d)

Figure 8: Example rate maps and place fields: (a) spike rate map with CoM vector,
direction 181.4° and magntude 9.3, (b) corrected spike rate map with CoM vector,
direction 187.2° and magnitude 5.3, (¢) place field map with numbered field centres
projected onto the CoM axis (each marked by a magenta *), a white X marks the
mean field centre projection point, and the small white square in the centre marks
the origin. Note: maps (b), (¢) and (d) were corrected for place by direction (PxD)
sampling bias.
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3.8 Head direction properties

I used the CircStats functions circ_r and circ_mean to compute the Rayleigh vec-
tors. Conceptually, head direction properties can be computed from the polar head
directions [19, 46], as shown in Figure 6(d).

HD cells typically display a Rayleigh vector length of at least ~0.25 (on a scale
from 0 to 1). About 50% of the cells in the MEC meet this threshold [4], but
the degree of directional tuning tends to be less in the MEC than in pre- and
parasubiculum [8, p115].

3.8.1 Polarplots

Polarplots were generated with the script in Figure 9; functions circ_r, circ mean,
and circ_rtest are discussed in the follow sections.

smooth_dir = easy_make_polarplot( data, tet_idx, cell_num, exact_cut);
theta = (circshift(linspace(0,2*pi,60),30))’

polarplot(theta, smooth_dir)

d=(2*pi) /60 % d: correction factor for binning
R=circ_r(theta, smooth_dir, d)

p=circ_rtest(smooth_dir)

rad=circ_mean(theta, smooth_dir, ’all’)

polarplot([rad,rad], [O,r], ’Linewidth’, 2)

Figure 9: The script for generating polar plots. All angles and directions are in
radians.

3.8.2 The mean resultant vector

The length of the mean resultant vector is a measure of circular spread. The closer
it is to one, the more concentrated the data sample is around the mean direction.
The mean resultant vector was computed by ¥ = circ_mean(smooth dir).

Vector length is defined by the equation

R =7l (1)

and was computed by R = circ_r(smooth dir). The estimation of R is biased

when binned data is used and can be corrected by supplying the bin spacing d as a
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third argument and computing a correction factor [50, Equation 26.16]

d
“= 25in(d/2) @)

setting R. = cR.

3.8.3 The Rayleigh test

The Rayleigh test asks how large the resultant vector length R must be to indicate
a non-uniform distribution [24, 50]. This test is well suited for detecting a unimodal
deviation from uniformity [3].

The Rayleigh test was performed by computing p = circ_rtest(smooth dir)

where a small p value indicates a significant departure from uniformity [3].

4 Results

4.1 Summary of all cells

Figure 10 is a data summary of all cells. These were corrected for place by direction
sampling bias using the function pxd, based on [6]. The directional bias for the
CoM and preferred HD vectors is in row 2 similar, as is the distribution of vector
magnitudes in row 3. Figure 17 in the Appendix summarises the same data before
PxD correction.

Table 1 presents a summary of gridness and directional statistics for all cells,
both before and after PxD correction, which had large impact on some metrics of
interest, i.e. mean gridness was reduced from 0.67 to 0.25, and CoM ||d|| was reduced
from 2.51 to 1.29. However, this may be correct. For example, the distribution of
preferred HD vector lengths (||7]|) in Figure 10 is similar to the distribution Rayleigh
vector lengths in Figure 6(e). And although the threshold for HD cells is ~0.3 in
that figure, compared to a mean length 0.16 for the cells in this report, cells in the
presubiculum tend to be more directional than in the MEC [8, p115].

Figure 11 shows polar plots for the CoM vectors d and the directional vectors
(Rayleigh vectors) 7. As expected, the distribution of magnitudes is skewed to small

values, while direction is more evenly spread over 360°.
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Gridness and Direction (PxD), cell count 112

Gridness

15

Mean head directions

count

-1 -0.5 0 0.5 1 30 90 150 210 270 330
gridness score degrees (60° bins)

30 CoM vector angle HD vector angle

20
- 15
5
8 10
5
0
0 100 200 300 0 100 200 300
degrees (60° bins) degrees (60° bins)
CoM vector ||d|]| HD vector ||r]]|

40

0 2 4 6 0 0.2 04
magnitude magnitude

Figure 10: Histograms for gridness and direction (all cells), corrected for place by
direction (PxD) sampling bias.
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mean | standard deviation | minimum | maximum
Gridness 0.67 0.49 -0.69 1.38
Gridness (PxD) | 0.25 0.51 -0.72 1.33
CoM ||d|| 2.51 2.17 0.37 12.77
CoM ||d|| (PxD) | 1.29 1.11 0.07 6.10
HD ||| 0.16 0.13 0.00 0.46
HD ||r|| (PxD) 0.16 0.14 0.01 0.50

Table 1: Summary statistics for all 112 cells.

CoM and HD vector angles (PxD), cell count=112

CoM vectors (d)
90
120 60
150
180 5
210
&
240
270

Figure 11: Polar plots for CoM and directional vector (all cells), after PxD correc-

tion.
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30 150
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HD vectors (r)

330

300

4.2 Gridness and directionality depend on cell type

The place by direction corrected rate maps (pxd) should provide an unbiased esti-

mate of the pure spatial and directional rate map. Figure 12 shows maps for one

cell: an uncorrected rate maps (row 1), and corrected rate maps (row 2).

Uncorrected rate maps typically use about 2500 spatial bins (~4cm?) each, and

60 directional bins (6 degrees each). Corrected rate maps typically use about 625
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spatial bins ~16cm? each and 360 directional bins (1 degree each).

The lower peak rate for row 2 is partly due to the larger bin size used by pxd.
The pxd generated polar plot looks very different from the uncorrected version partly
due to its 1 degree directional bins, and vector magnitude is slightly less for this

cell.

21403101: t=3, c=1, spikes=379

HD tuning: 36.5°, r=0.4
90
120 0.8 60

06

Gridness = 1.34

150

30

180

210 330

240 300
270

HD tuning: 27.4°, r=0.3

27Hz
120

150

180

210

240 300
270

Figure 12: Rate maps: row 1 uncorrected, row 2 was corrected for PxD sampling
bias.

4.3 CoM vector direction and the HD vector for some cells

are correlated after PxD correction

Figure 13 shows polar plots and histograms for the small number of cells that passed
a set of three thresholds (T, for gridness, T4 for ||d||, and T, for ||r||. The appli-
cation of higher thresholds greatly reduces the number of cells and tends to make

statistically significant results less likely.
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CoM v HD angles: cells=17, Tg=-1.0, Td=1.40, Tr=0.13

CoM vectors Resultant vectors
120 % g0 120 9.%_6 60
150 (f 30 150 OO 0.4 o 30
5 OCQOO 055,
180 0 % o0 180 2 o 0
ho o s} (5)
[] & OO
210 330 210 - © 330
240 270 300 240 270 300
4 CoM directions 6 Head directions
m
s
=3 5
5 B4
82 g
= o)
8, &2
=
(=]
0 O
0 100 200 300 0 100 200 300
degrees resultant vector angle (radians)

(a) Thresholds: gridness > -1.0 and ||d|| > 1.40 and ||r| > 0.13.

CoM v HD angles: cells=10, Tg=0.2, Td=1'40’ Tr=0.13

CoM vectors Resultant vectors
120 * g0 120 05 60
& 0 04
150 2 30 150 o 0 %D 30
o1€5) 5 (()).1 o
180 o3 o 180 | 0 0
@] O
&
210 330 210 O 8 330
240 270 300 240 270 300
3 CoM directions 3 Head directions
m
c
T
- =]
£2 B2
8 T
= [=2]
e 1 g1
=
(=]
0 Co
0 100 200 300 0 100 200 300
degrees resultant vector angle (radians)

(b) Thresholds: gridness > 0.2 and ||d|| > 1.40 and ||r|| > 0.13.

Figure 13: Useful thresholds can reduce the number of cells from 112 to less than
20: (a) Gridness > -1.0: 17 cells, (b) Gridness > 0.2: 10 cells. PxD corrected.

Gridness, ||d||, and ||r|| have an impact on the correlation of a cell’s CoM direction

with its preferred HD. To gain some insight into this relationship, these parameters

were optimised as thresholds. Figure 14 shows the results where the optimisation

algorithm evaluated combinations of thresholds to find the combination with the
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highest positive correlation on the condition that the associated p-value was < 0.05
and included at least 10 cells. Significant negative correlation occurred with some
threshold combinations, but those results have been omitted for clarity.

Figure 14(a) shows the bar chart for correlation of the CoM vectors with pre-
ferred HD vectors after PxD correction. Given optimal thresholds for ||d|| and ||r]|,
statistically significant correlation is only present when cells with low gridness are
included, i.e. when the gridness threshold is not greater than -0.5.

It may be worth noting that the results reported in this section are very different
from what was observed when using data that was not PxD corrected, i.e. Figure
19 in the Appendix shows that correlation also occurred in the gridness threshold
range of about 0.25 to 0.65, and was maximised when a gridness threshold of > 0.5
was applied.

In Figure 14(b) below, correlation exists only in a narrow range of CoM vector
||d|| thresholds, given optimal thresholds for ||| (0.14) and gridness (-1.0). In Figure
14(c), correlation exists over a range of low ||r|| thresholds, given optimal thresholds

for ||d|| and gridness.
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Correlation of CoM with preferred HD (pxd). Td=2.80, Tr=0.00
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Figure 14: Correlation of CoM direction with preferred head direction optimised for
maximum correlation: (a) p-values < 0.05 shown in red, p-values > 0.05 were set to
0, correlation with p-values < 0.05 and at least 10 cells shown in blue, insignificant
correlation values were set to zero, (b) significant correlation exists in a narrow range
of CoM ||d|| thresholds given optimal thresholds for ||| and gridness, (c) significant
correlation exists for range of small ||| thresholds (well below the mean ||r| of
0.16),given optimal thresholds for ||d|| and gridness.

Figure 15 shows the correlation of CoM direction with preferred head direction
after the thresholds were optimised for the highest mean correlation over the in-
dependent domain (as opposed to a single maximum correlation). In Figure 15(a)

the significant correlation exists at opposite ends of the gridness threshold domain
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bimodal.
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Figure 15: Correlation of CoM direction with preferred head direction optimised

for the highest mean correlation over the independent domain:

(a) correlation is

bimodal given optimal thresholds for ||d|| and |||, (b) correlation exists for small
||d|| thresholds, given the optimal threshold for ||r|| and gridness, (c¢) a narrow range
of ||r|| thresholds is associated with correlation given the optimal thresholds for ||d||
and gridness.

4.4 Place fields and grid shifts

Figure 16 shows rate maps and place fields for an example cell. Figure 16(a) shows

its CoM vector in red and (b) shows the boundaries of each watershed field, but
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what caused the CoM to move? Did the entire grid shift, or is the magnitude and
direction of this vector due to a small number of fields with high spike counts? In
other words, was the shift caused by global or local factors?

In Figure 16(c), the seven peak rate field centres were projected onto the CoM
axis. In this case, field spike count had no impact on the projection points, and the
mean projection point indicated a global grid shift of 4.15.

In Figure 16(d), the seven CoM field centres were projected onto the CoM axis. In
this case, field spike counts weighted the projection points, and the mean projection

point indicated a spike weighted local grid shift of 3.24.

21403101: t=3, c=1, spikes=379

(a) Grid with CoM (PxD)
187.2°, ||d||=5.3

(b) Watersheds

(c) Place fields (d) Place fields
with peak rate centres with CoM centres

Figure 16: Place fields and grid shifts: (a) PxD corrected rate map with CoM vector,
|ld|l = 5.3 from the origin (white square) to the CoM, (b) place fields delineated
by the watershed algorithm; in (c) and (d) the numbered place fields have been
projected onto the CoM axis, the white X marks the mean projection point for the
peak rate field centres, grid shift=4.15, (d) numbered place fields with CoM centres
projected onto the CoM axis, the white X indicates the mean projection point, grid
shift=3.24. Rate maps were corrected for PxD sampling bias.
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In following tables low gridness is associated with highly variable field and grid
properties. Table 2 shows field statistics and Table 3 shows global and local grid
shift statistics for a total of 253 fields in 49 cells with above average gridness, i.e. >
0.25.

Table 4 shows field statistics and Table 5 shows global and local grid shift statis-

tics for a total of 243 fields in 63 cells with below average gridness, i.e. < 0.25.

mean | standard deviation | minimum | maximum
Per bin (Hz) 1.06 0.29 0.57 1.68
Per field (Hz) 118.24 133.41 1.24 982.70
Field area (bins) | 120.6 80.45 3 421

Table 2: Field statistics for cells with gridness > 0.25. Cell count 49, field count
253.

mean | standard deviation | minimum | maximum
Global grid shift | 1.94 1.70 0.05 8.84
Local grid shift 1.62 1.25 0.001 5.02

Table 3: Gridness > 0.25: global versus local shifts along the CoM axis. Cell count
49, field count 253.

mean | standard deviation | minimum | maximum
Per bin (Hz) 1.32 0.31 0.67 1.87
Per field (Hz) 267.57 927.70 1.00 7972.81
Field area (bins) | 152.5 140.57 3.00 676.00

Table 4: Field statistics for cells with gridness < 0.25. Cell count 63, field count
243.

mean | standard deviation | minimum | maximum
Global grid shift | 2.70 2.05 0.15 11.58
Local grid shift 1.88 1.51 0 5.69

Table 5: Gridness < 0.25: global versus local shifts along the CoM axis. Cell count
63, field count 243.
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5 Discussion

The spatial map in the MEC comprises both grid cells and head-direction cells.
These cell types do not form discrete populations, rather they form a continuous
population. Grid cells express variable degrees of directional modulation and head-
direction cells express variable degrees of grid structure [35]. The conclusion by
Sargolini et al. [35] seems to be consistent with the results presented in this report.

After PxD correction, imposing higher and higher gridness thresholds did not
increase the correlation of the CoM vector d with the preferred HD vector 7. Quite
the opposite. Considering Figure 14, correlation was highest when the gridness
threshold was in the -1 to -0.5 range, and not signifcant at gridness thresholds >
-0.5. This result is somewhat intuitive. “Pure” grid cells, such as those with high
gridness scores, are mostly or perhaps exclusively responsive to place. Cells with
less gridness can afford to be responsive to direction and place. For directional
correlation of CoM with preferred HD, it seems that no gridness is required.

Figure 15(a) was based a different optimisation. Thresholds were found that
maximised the mean correlation over the entire domain. The gridness range from
-1 to -0.5 was once again associated with positive correlation for about 68 cells,
but a small set of cells with high gridness scores (thresholds from 0.7 to 0.9) were
associated with higher levels of correlation. So, perhaps this subset of just 14 cells
are the real conjunctive grid cells.

The statistics in Tables 2 to 5 for place fields and grid shifts, as illustrated by
Figure 16, indicate that fields are quite variable, and the magnitude of the CoM
vector is mostly due to a global shift of the grid. Both factors contribute to grid
asymmetry.

Tables 2 and 4 contain statistics about the place fields in cells with gridness of
> 0.25 and < 0.25 respectively. Standard deviation is consistently higher for the
subset of cells with low gridness. This was expected because low gridness implies a
firing topography with less structure and regularity.

Tables 3 and 5 contain statistics about the grids in cells with gridness of > 0.25
and < 0.25 respectively. Using a gridness threshold of > 0.25, the mean global shift
for these cells was 1.94 versus 1.62 for the local shift ... a relatively small difference.
However, using a gridness threshold of < 0.25, the mean global shift for these cells

was 2.70 versus 1.88 for the local shift. This consistent result suggests that, in
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general, global grid shifts contribute more to CoM vector magnitude ||d|| and have
a bigger impact on grid asymmetry than local grid shifts. This is especially true for
cells with low gridness.

Whether or not global versus local shifts are relevant to the correlation between
a cell’s CoM vector direction and its preferred HD is not yet clear from the data

analysis in this report.

6 Future Work

The results based on the PxD corrected rate maps were not as expected. It may
be that there is an error in my Matlab code, or that the pxd function was not
applied correctly at some point. In any event, perhaps with more cells the functional
interaction between parameters will result in a smoother output as opposed to the
very discontinuous output often seen in this report.

The current version of Universal Matlab builds rate maps that mix place spikes
with directional spikes. It should be possible to build two maps, one for spikes
closely associated with preferred direction, and the other built from spikes recorded
while the animal was not facing in the cell’s preferred HD.

Place fields and grid shifts, as illustrated by Figure 16, could shed more light on
conjunctive grid cells and the interaction of place tuning versus directional tuning.
It may be that each field is directional in some cells and that each field’s directional
tuning is correlated with the cell’s mean resultant vector which is based on the entire
rate map.

Instead of just more data analysis, it might be interesting to to also apply some
pharmacological methods. For example, in vivo recordings combined with neural
manipulations have been used to examine interdependence and coherence between
HD cell, grid cell, and place cell activity. In general, perturb one type of spatially
tuned signal by manipulating activity in a circuit node and, at the same time, record
a different spatially tuned signal at another location in the circuit. Results by Winter
et al. [47] suggested that the HD signal is necessary for the generation of grid cell

activity.
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7 Appendix

7.1 Summary

Gridness and Direction (not PxD), cell count 112

Gridness
15 — : :

15 Mean head directions

count
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Figure 17: Histograms for gridness and direction (all cells), not PxD corrected for
place by direction sampling bias.
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CoM and HD vector angles (not PxD), cell count=112
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Figure 18: Polar plots for CoM and head direction (all cells), not PxD corrected.

7.2 Correlation

In Figure 19, gridness thresholds from 0.3 to 0.6 resulted in high correlation given
optimal thresholds for ||d|| and ||r|| (without PxD correction).
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Correlation of CoM with preferred HD (not-pxd) T =3.00, T =0.07
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Figure 19: Correlation of CoM direction with preferred head direction using data
that was not corrected for PxD sampling bias: (a) p-values < 0.05 shown in red,
correlation shown in blue, p-values > 0.05 were set to zero, correlation with p-values
> 0.05 or less than 10 cells were set to zero, (b) correlation tended to increase with
the magnitude of the CoM vector d given optimal thresholds for HD tuning ||| and
gridness T, (c) significant correlation in a narrow middle range of HD tuning ||r||
thresholds exists given optimal thresholds for CoM ||d|| and gridness T,.
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Correlation of CoM with preferred HD (not-pxd). Td=2.80, Tr=0.10
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Figure 20: Non-optimal thresholds, using not PxD corrected rate maps.

7.3 Spike rate, spatial autocorrelation, and polar plots

Figures 21 to 34 show uncorrected maps in row 1 and PxD corrected maps in row
2 for the 12 cells with gridness > 0.30 and directionality ||r|] > 0.30. However
these threshold were applied to maps that were not PxD corrected (which tends to
decrease gridness scores and the grid’s peak firing rate per bin).

Spike rate maps are in column 1, spatial autocorrelograms in column 2, and polar

plots in column 3 of each figure.
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21403101: t=3, c=1, spikes=379
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Figure 21

21403311: t=1, c=1, spikes=493
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Figure 22
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21404042: t=1, c=5, spikes=739
HD tuning: 31.8°, r=0.4
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21605241: t=4, c=3, spikes=255
HD tuning: 223.7°, r=0.3
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21606222: t=3, c=1, spikes=1649
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21607121: t=4, c=1, spikes=781
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21705181: t=4, c=1, spikes=2129
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21705261: t=4, c=1, spikes=2317
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Figure 28
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44506151: t=2, c=1, spikes=993
HD tuning: 331.9°, r=0.3
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44506151: t=2, c=4, spikes=491
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45708151: t=3, c=1, spikes=784
HD tuning: 210.1°, r=0.4
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45708211: t=1, c=3, spikes=678
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49402181: t=4, c=3, spikes=272

1.0 Hz HD tuning: 80.4°, r=0.4
Gridness = 0.50 90
120 0.5 60
150 3 30
0j
oft
180 0
210 330
240 300
270
03 Hz Gridness = -0.07 HD tuning: 83.8°, r=0.3
90
120 08 60
150 30
180 0
210 330
240 300
270

Figure 33

62502259: t=4, c=5, spikes=311
HD tuning: 213.8°, r=0.4
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Figure 34
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