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Abstract

Classic spike sorting pipelines cluster spike waveforms into groups that rep-
resent their source neurons, but they suffer from inaccuracy and incomplete
automation. Artificial neural networks (ANNs) are class of machine learn-
ing methods that are remarkably flexible and well suited to learning from
large data sets. This report presents empirical evidence that neural network
enhanced pipelines can provide higher classification accuracy than pipelines
that rely exclusively traditional feature extraction and clustering methods.



1 Introduction

Electrophysiological methods have traditionally used a small numbers of electrodes
to record from a small number of neurons. They are the gold standard in neu-
roscience because they can record single neuron activity at almost any location
with high temporal and spatial resolution. However, microelectrode arrays based
on CMOS technology, such as Neuropixels, provide ~1000 recording sites. They
can deliver low-noise recordings from hundreds of neurons [65]. Large scale electro-
physiology requires new computational methods, and associating spikes with single
neurons is the main challenge [65].

Historically, due to data-handling and computational considerations, simple on-
line methods detected the presence of action potentials, and only a few milliseconds
of data per action potential was saved for future analysis. With the advent of CMOS
probes and ever cheaper storage, it is now becoming standard practice to record the
entire the wide-band (0Hz - 30kHz) signal originating from each channel for off-line
analysis. This massive increase in data requires spike detection and classification
methods that are automated and more complex than traditional methods. Better
methods would not only increase the quantity and quality of information gained
from recordings, they would also reduce the number of experimental animals used
and the time taken to collect data.

Artificial neural networks (ANNs) are class of highly parameterized machine
learning methods that have attracted more and more attention in recent years.
They are flexible and can accurately model relatively small irregularities in functions.
Even a network with a single hidden layer can model any continuous function if the
hidden layer contains enough nodes (artificial neurons) [28].

The aim of this project is to investigate the utility of ANNs for spike detection
and classification in the context of spike sorting. The classic spike sorting pipeline
proceeds in four basic stages: data filtering, threshold spike detection, feature extrac-
tion, and clustering spike waveforms into groups that represent their source neurons.
My hypothesis is that a pipeline that includes a neural network will classify spikes
with greater accuracy than pipelines that rely exclusively on traditional methods.

To test the impact of ANNs on performance, I used data sets that included
ground truth in the form of paired intracellular and extracellular recordings, i.e.
the hippocampus data set he-1 from the Buzséki Lab [29, 31, 32]. As shown in the
results section of this report, pipelines with ANNs significantly outperformed the
competition, especially after the spike waveform data was augmented.

2 Background

In contrast to intracellular recordings, extracellular recordings do not give a direct
access to the neuronal activity. They usually include contributions from multiple
neurons and noise, so they must be “spike sorted” before being converted into spike
trains [17, 29, 45, 57]. Spike sorting is the process of assigning experimentally
recorded voltage waveforms to single neurons when the number and identity of the
spiking neurons is not known [11, 34].

Figure 1 shows an overview of a spike sorting pipeline from start to finish that in-
corporates the use of templates (exemplary waveforms). Ideally, all spike waveforms
from the same the source neuron will end up in the same cluster (classification).
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Figure 1: Overview of spike-sorting process: (a,b) record changes in the extracellular
electrical potential caused by nearby spikes, (c) filter, (d) detect, (e) peak align
waveforms, (f) extract features, (g) cluster, (h) use templates, (i) construct spike
trains. Image: [17].

2.1 Introduction

Extracellular recordings reflect the sum of all transmembrane currents for all neurons
in the vicinity of the electrode tip weighted by the distances [37]. In Figure 2, the
concentric circles indicate various distance estimates; extracellular electrodes can
record spikes from single neurons less that ~50 to 100 um away from the tip of the
electrode in the inner circle, neurons further away can be detected but not separated,
while neurons in the outer area, more than ~150 yum away, contribute to background
noise and their spikes cannot be detected [32, 57, 58].

Recording from multiple neurons may be more useful if spike trains can be con-
structed by associating each spike with its source neuron. Neuron spike times trans-
mit most of the information [66]. Therefore spike trains are the main carrier of
information in mammalian neural systems [17], and may even be the sole informa-
tion carrier between brain regions [2, 3.

2.1.1 Spike Detection

The first steps are critical for accurate spike sorting. While bandpass filtering makes
spike detection easier and is relatively straightforward, spike detection itself requires
picking a good threshold. If the threshold is too high, spike sorting is likely to result
in too many false negatives; if too low, then too many false positives.

Consequently, some sorting algorithms include an extra transformation to the
filtered data before spike detection. For example, apply an energy operator [7, 62],
the continuous wavelet transform [51], or fuzzy and probability theories [5].

More recently, Rossant et al. [60] used the program SpikeDetekt for spike detec-
tion and feature extraction. First they highpass filtered the raw data to remove the
slow local field potential signal. Then spikes were detected using a double-threshold
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Figure 2: For neurons close to the electrode tip in the inner circle, ~50 to 100
microns, the signal to noise ratio (SNR) is good enough to distinguish the activity
of each single unit. For neurons in the outer circle, up to about 150 microns away,
spikes can be detected but their shapes cannot be distinguished. Spikes from neurons
further away in the outer area contribute to background noise. Image: [57].

flood fill algorithm where spikes were detected as spatio-temporally connected com-
ponents. Specifically, a spike is detected when the filtered signal exceeds a weak
threshold 6, for every point and at least one point exceeds a strong threshold 6,
[60].

In addition, the noise distribution might be nonstationary, so it may be useful
to compute the noise estimate (and therefore the threshold) with a sliding block of
data (perhaps a few minutes long). Indeed, some data might have a high median
value during the first half of the recording, for example, followed by a low median
value during the second half.

After detection, each putative spike waveform (~2 to 3 ms long) is stored in a
matrix, one row for each waveform, which can be fed into the sorting algorithm.
The extracted spike waveforms may be peak aligned to improve the classification
process.

2.1.2 Feature extraction and clustering

Waveform shapes can be important, e.g. where “wide” is characteristic of an excita-
tory neuron and “narrow” is characteristic of an inhibitory neuron [63]. An example
of feature extraction and clustered waveforms is shown in Figure 3. However, in
practice, such features do not work well for spike sorting [45, 56].

Most traditional spike sorting methods use wavelets [56] or principal components
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Figure 3: Excitatory pyramidal neurons and interneurons occupy different regions
in feature space. Image: [59]

analysis (PCA) for feature extraction, and K-means for clustering [45]. Despite
major progress in algorithms and software, spike sorting is still labor-intensive during
the clustering and quality assessment phases [6].

2.2 Electrode Technology

The hardware for recording in vivo has shown accelerating improvement over the
last 50 years or so, with recording sites per electrode shank increasing from 1 to
about 1000 [65]. This flood of data requires better computational methods, i.e.
completely automated methods.

2.2.1 Tetrodes

The hc-1 extracellular recordings analyzed in this report were collected in the late
1990s with wire tetrodes (4 channels per shank). It may be worth be noting that
the recordings from the four extracellular channels was remarkably similar for all
of the tetrode data files used in this report. In general, the distance between the
four electrodes would have caused them to receive signals that were not virtually
identical [Personal communication: Dr Caswell Barry, UCL]. In any event, one half
of the hc-1 data set was recorded by tetrodes, the other half by six-site linear silicon
probes [23].

2.2.2 Neuropixels Probes

Neuropixels are shown in Figure 4. They are based on the same complementary
metal-oxide-semiconductor (CMOS) technology that is used for constructing silicon
integrated circuits. This technology reduces wire width (to 130nm in the probes)
and produces a probe that contains all the active circuits needed for amplification,
digitization, and multiplexing [65].
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Figure 4: Electrode technology has advanced from simple wires to passive silicon to
active silicon as exemplified by the Neuropixels probe: (a) Sites per shank. Blue dots
for wire, red dots for passive silicon, black dots for active silicon. (b)—(d) Neuropixels
probe. (b) Schematic of tip. (¢) The printed CMOS element, including the shank,
circuitry for amplification, multiplexing and digitization. (d) The packaged device
with flex cable, and head stage for interfacing and further multiplexing. Image: [65].

Neuropixels sample signals densely. As a result, they can isolate single neuron
activity better than previous technologies and, in some cases, detect spikes from
individual neurons at over a dozen sites [41]. And they produce large amounts
of data. The data acquisition rate (~1 GB/min for 384 channels at 30 kHz) is
on par with imaging [65], but this data needs to be processed to assign spikes to
individual neurons [17]. In response, new spike sorting algorithms exploit GPUs and
incorporate novel algorithmic steps [12, 14, 33, 42, 54, 67].

Kilosort [54] is a spike sorting algorithm that uses a novel approach to dimen-
sionality reduction. It also uses GPU-acceleration to enable processing speeds on
the scale of datasets from in vivo recordings with Neuropixels probes. Kilosort com-
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bines spike detection with clustering and template matching to resolve overlapping
spikes and was found to provide superior performance when tested against prior
algorithms [54].

Nonetheless, no spike sorting algorithms are yet truly automatic, they require
manual supervision to improve results. This is partly due to the movement of brain
tissue relative to the probe, a problem known as electrode drift [65].

2.3 Ground truth neuronal data

The greatest barrier to developing automatic spike sorting algorithms is the difficulty
of ground truth validation [65]. One way is through detailed simulations of spiking
neurons, which produce synthetic voltage traces with predetermined spike times [27].

However, the best form of ground truth, is actual simultaneous recording of
spikes with another method such as a juxtacellular electrode [65]. This provides a
set of known spike times for the extraction of waveforms from adjacent extracellular
recordings.

3 Methods

I used Matlab R2018b, [https://uk.mathworks.com|, for all computation and plots.
Matlab function names and parameters are in this font: function_name.

3.1 The hc-1 data set

I used the he-1 paired-recording data set from the Buszdki Lab [29, 31, 32]. The
extracelluar data was recorded from the hippocampus by tetrodes while an intracel-
lular probe recorded “ground truth” directly from a nearby cell. As a result, spikes
recorded simultaneously by the intracelluar (IC) and extracelluar (EC) probes were
almost certainly from the same neuron. If the signal to noise ration (SNR) is high
enough, the simultaneous extracelluar spikes should be detectable and, ultimately,
grouped together in the same cluster by the clustering algorithm.

3.1.1 Tetrode recordings overview

Most of the tetrode recordings include 4 EC and 1 IC channel. If available, I used
the IC channel to detect ground truth (GT) spike times for EC waveform extraction.

e Sampling rate: 10000.
e FEC channels: 1 to 4 or 2 to 5.

IC channel: 6 or 7.

Channel 7: membrane potential, varies depending on the acquisition system.

Channel 8: almost always injected current.


https://uk.mathworks.com

3.2 Data filtering and spike detection

Most algorithms first use bandpass filtering to pre-process the data, then amplitude
thresholding to detect spikes [57]. Amplitude thresholds are based on an estimate of
the standard deviation of the background noise. The standard deviation of the data
and median absolute deviation of the data are two common methods [56]. Other
spike detection methods are presented in [24, 50, 51].

3.2.1 Data was filtered with a bandpass filter

Electrodes record signals due to synaptic currents and action potentials [25]. Synap-
tic currents are slow and action potentials are fast, so action potentials can be
separated with a high bandpass filter.

To make it easier to detect high frequency neural spikes the first step is to
“flatten” the signal by filtering out the low frequency content. In this report, the
bandpass was set to 300 to 3000Hz for spike detection, the default used Wave_Clus
[56]. The best cut-off frequencies depend on the application.

Causal filters usually introduce phase distortions which may seriously change the
spike shapes, but distortions can be greatly reduced by using a non-causal filter that
removes noise without introducing phase lag [57]. The Signal Processing Toolbox
in Matlab includes the function filtfilt for implementing a non-causal filter. The
filtfilt function performs zero-phase digital filtering by processing the input data
in both the forward and reverse directions [53]. Algorithm 1 shows Matlab code for
implementing the bandpass filter input data X.

fs = 10000; % Sampling Frequency

fcl = 300; % First Cutoff Frequency
fc2 = 3000; % Second Cutoff Frequency
order = 2;

fnorm = [fcl fc2]/(£fs/2);

[b1,a1] = butter(order, fnorm, ’bandpass’);

filtered_data = filtfilt(bl, al, X);

Algorithm 1: Bandpass filter: this non-causal bandpass filter is based on a
second order Butterworth filter, [ https://uk.mathworks.com/help/signal/
ref/butter.html |.

Details are provided in the Appendix, Section 7.1.

3.2.2 Spikes were initially detected by amplitude threshold

Spikes were detected by two user defined parameters: a threshold amplitude (a
multiple pf the median absolute deviation), and the required number of consecutive
data points above the threshold. After detection, a number data points before and
after the time of detection were peak aligned, extracted, time stamped, and stored
in a matrix of vectors.

A threshold can be set manually, but the detection trade-off (false positives
versus false negatives) depends on the signal to noise ratio of the recording. One
possibility is an automatic threshold calculated as a multiple K of the estimated
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standard deviation o of background, i.e. threshold = K x o, where K is a constant
typically between 3 and 5 [58] and noise is assumed to be normally distributed.

As proposed in [56], the median absolute deviation (MAD) provides a more
robust estimate of the standard deviation of background noise [16, 56].

Details are provided in the Appendix, Section 7.2.

3.3 Feature Extraction

Manual feature extraction requires time consuming user input and often yields poor
results [45]. Partially automated computational methods have been shown to gen-
erally outperform manual methods [29].

Features can be extracted automatically with wavelet decomposition [35, 36, 44],
or with principal component analysis (PCA). [20, 21, 22],

For example, given 50 spikes, 21 data points each, both wavelet decomposition
and PCA will generate 50 transforms, 21 coefficients each. The waveforms can be
clustered using a small number of coefficients.

3.3.1 Wavelet decomposition

Wavelet decomposition generates vectors of coefficients from waveforms such that
cach coefficient characterizes the spike shapes at different scales and times [56].
The Matlab function wavedec can be parameterized to perform four-level multi-
resolution decomposition with Haar wavelets (a member of the Daubechies family
of wavelets).

Haar wavelets are well suited to spike sorting. Their properties allow the dis-
criminative features of the spikes to be expressed with a small number of wavelet
coefficients and regardless of spike shape [56].

As shown in Algorithm 2, each waveform is a short vector of data points, e.g.
about 2 ms of data. Wavelet decomposition is applied to each waveform to compute
21 coefficients per waveform, one wavelet coefficient for each data point.

waveforms(1..N);

for ii=1:N
W(ii) = wavedec( waveforms(ii), 4, ’haar’);
end

Algorithm 2: Pseudocode for wavelet decomposition of N waveforms.

Details are provided in the Appendix, Section 7.3.1.

3.3.2 The Kolmogorov-Smirnov test

The one-sample Kolmogorov-Smirnov test [40, 48] was used to determine whether
the waveform features came from a population with a standard normal distribution.
I used this test to select three wavelet coefficients that were not normally distributed
and, hopefully, would best separate the different waveform classes. However, if the
features are normally distributed, then PCA is likely to result in better classification
performance.
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3.3.3 Principal component analysis (PCA)

PCA can be used to extract features for clustering/classifying waveforms. The aim
of principal component analysis (PCA) is to represent the d-dimensional data in
a lower-dimensional space that best expresses the variation in a sum-squared error
sense. For example, PCA might reduce 21 features to 3 principal components that
account for over 90% of data variance. I used Matlab’s pca function and the first
three principal components. More details are provided in the Appendix, Section
7.34

3.4 Classification of Spike Waveforms

3.4.1 Neural Networks

Neural networks that operate on two or three layers of connected artificial neuron
layers are known as shallow neural networks. Deep learning networks can have many
layers, even hundreds. Both are machine learning techniques that learn directly from
input data. To avoid confusion, artificial neurons in an ANN will be referred to as
“nodes”.

3.4.1.1 The training function In general, a training function will try to min-
imize the sum of squared errors between the correct output and predicted values by
following the steepest descent in weight space. This is a sequence of steps, known as
back-propagation, in which the weights are updated by working from each output
node back to the input nodes.

The default training function for patternnet is trainscg; it uses the scaled
conjugate gradient algorithm [49]. It can train any network as long as its weight,
net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance with respect to
the weight and bias variables. However, whereas standard backpropagation always
proceeds down the steepest gradient of the error function, a conjugate gradient
method (CGM) will go in a direction that is conjugate to the directions of the
previous steps. As a result, minimization done in one step is not partially undone
by the next [26].

A line search at each iteration is computationally expensive; it requires that the
network response to all training inputs be computed several times for each search.
The scaled conjugate gradient algorithm developed by Moller uses a step size scaling
mechanism to avoid time-consuming line search [49].

3.4.1.2 The pattern recognition network Algorithm 3 shows how to use
Matlab’s patternnet to create, train and test a pattern recognition network, i.e.
a two layer feedforward network with one hidden and one output layer, [https:
//www.mathworks.com/discovery/pattern-recognition.html]. The input data
contains spike waveforms from four known classes. The target data contains column
vectors of class labels for each corresponding waveform, e.g. [1,0,0,0] indicates class
1 and not classes 2, 3 or 4.

First, set the training function to be trainscg. Set the hidden layer to 10 nodes
(default is 10), then create the net object. Set the neural network GUI window to
not show. Set the division of data for training, validation, testing to 70, 15, and 15
percent. Train and test the network. Calculate the percent error.
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X = input_data;
t = target_data;
training function = ’trainscg’;

hidden_layer_size = 10;
network = patternnet(hidden_layer_size, training_function);
network.trainParam.showWindow = false;

network.divideParam.trainRatio = 70/100;
network.divideParam.valRatio = 15/100;
network.divideParam.testRatio = 15/100;

[network, tr] train(net,x,t);

predictions = network(x);
target_idx = vec2ind(t);
pred_idx = vec2ind(predictions);

percent_error = sum(target_idx “= pred_idx)/numel(target_idx)*100;

Algorithm 3: Matlab code for the pattern recognition neural network.

Figure 5 shows the Matlab generated diagram for a two layer feedforward network
with a sigmoid hidden layer and softmax output nodes (their output consists of
positive numbers that sum to one). In theory it can classify waveforms arbitrarily
well given enough nodes in its hidden layer. The input to this network is a matrix
of waveforms, 21 features each, a hidden layer with 10 nodes, and an output layer
with 4 nodes (one for each class). For each input waveform, the network’s softmax
output layer outputs a value in the range [0,1] for each possible class. This output
sums to one for each waveform and indicates, in a sense, how confident the network
is that this waveform is a member each class.

4\ Pattern Recognition Meural Network (view) - O >
Hidden Output
(B
21
\ A,
10 4

Figure 5: Diagram of a pattern recognition neural network with 21 nodes in its
input layers, 10 nodes in its hidden layer, and 4 nodes in its output layer. Image:
see Matlab nprtool, nnstart.

3.4.2 K-means

K-means [47] is an algorithm for finding structure in multidimensional data sets
[45]; it is a form of unsupervised learning [39]. Although simple and proposed over
50 years ago, it is still popular and widely used [38]. Essentially, K-means clusters
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“similar” objects together based on a distance metric.

If the clusters are well separated, then ideally all or nearly all waveforms in
a cluster will be from the same neuron. However, this is challenging because each
electrode can record from many neurons, the number of neurons in the neighborhood
is not known, and waveforms from different neurons may overlap to some extent in
feature space. This means that the SNR might not be high enough to accurately
partition all of the data into separate clusters.

After PCA, the N principal components (PC) of each waveform were clus-
tered by kmeans into k clusters using a distance metric, for example c¢_numbers
= kmeans(PC, k, ’Distance’,’sqeuclidean’, ’Replicates’, 10), where the
best set of clusters out of 10 replicates were returned, and each replicate used dif-
ferent initial random centroids.

In general, compact and well separated clusters score high for quality [38]. The
quality of the clusters depends partly on the initial random centroids, so kmeans
can be set to run multiple times ("Replicates’), then it chooses the set of clusters
than maximized the chosen quality metric. For this report, kmeans generated 10
replicates.

More details are provided in the Appendix, Section 7.4.

3.4.3 K-means accuracy

K-means is an unsupervised technique and quality metrics can be applied to de-
termine the quality of its clusters, but the cluster numbers it generates are not
associated with class numbers and may change during every replication. Indeed,
K-means is not usually assessed for accuracy.

However, k-means can be assessed for accuracy using Algorithm 4 if the true
class numbers for each waveform are known. Given four classes and cluster numbers
1 to 4, try all possible mappings of k-means cluster numbers to class numbers, and
use the maximum score found as a measure k-means accuracy for comparison with
supervised and semi-supervised classification algorithms.

max_acc=0;
maps=perms([1,2,3,4]); % 24 possible permutations

for map_idx=1:24
map=maps (map_idx,:)’;
idx_mapped=map (idx) ;

temp=100* (sum(idx_mapped==cluster_targets)/length(cluster_targets));
if max_acc < temp
max_acc=temp,
end
end
fprintf ("maximum score = %0.2f’, max_acc);

Algorithm 4: Pseudocode for finding the mapping from k-means cluster num-
bers to class numbers that maximizes the assessed accuracy.
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3.4.4 K-medoids

K-medoids is similar to k-means. It partitions data into k clusters based on distance
to the nearest medoid instead of the nearest centroid. It is based on medians so
the center of a cluster, the medoid, is a member of the subset. Therefore it may be
appropriate for domains that require robustness to outlier data, arbitrary distance
metrics, or in cases where the mean does not have a clear definition [43, 55].

3.4.5 K-Nearest Neighbors (k-NN)

Intuition suggests that new objects may be classified based on their proximity in
feature space to previously classified objects. The nearest neighbor (NN) rule is
simple: classify a new object in the category of its nearest neighbor [15]. The first
formulation of the k-nearest neighbor (k-NN) rule appears to have been in the 1950s
by Fix and Hodges [18, 19]. Even when k=1, as the size of the sample set approaches
infinity, the rule has a probability of error less than twice the Bayes error rate (the
theoretical minimum) and, therefore, of any other decision rule [15]. This approach
can also be used to build clusters. An iterative algorithm was proposed circa 1978
[46] that assigns each new object to the cluster of its nearest neighbor if that distance
is below a threshold.

k-NN has some interesting properties. Firstly, the function is approximated
locally and, therefore, sensitive to the local structure of the data. Secondly, it is
“lazy”, which means that all computation is deferred until classification.

k-NN has several advantages. No optimization or training is required. Accuracy
often compares well with more complex methods such as ANNs. Also, it allows
for easy implementation of a reject option for cases where confidence about the
predicted classification is not high enough [28].

Although the basic premise is simple, many variants of k-NN are possible. For
example, neighboring objects can be weighted by some function of distance. Con-
sequently the user is burdened with having to choose a weight function, distance
distance metric and, not least of all, k. Choice of k can be made empirically by
running k-NN on a representative test set with a range of values for k and choosing
the value that maximized accuracy. In general, the best choices depend on the data
set and the research question.

4 Results

Spike waveforms were extracted from five files in the hc-1 data set, d533101.dat,
d561103.dat, d561104.dat, d1453103.dat, and d14521.001.dat where each file in-
cluded one IC channel and four EC channels. The five files correspond to five
classes of spike waveform.

To compare the classification accuracy of a shallow neural network versus tradi-
tional methods, the training set was built by extracting 100 ground truth spikes per
EC channel from the five he-1 data files, 400 spike waveforms per class.

4.1 NN classification accuracy

Figure 6 shows the five classes of waveform in rows one to five. In some preliminary
tests, the NN was able to distinguish the GT EC waveforms from non GT EC
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waveforms with 100% accuracy ... the two classes were obviously different. In
contrast, the waveforms shown in Figure 6 are much more challenging.

The NN was trained on the examples from the first four rows (four classes) in
Figure 6, i.e. 1600 waveforms. The bar chart in row six shows that the NN correctly
classified class 1 and class 4 waveforms as class 1 and class 4 respectively with very
high probability (“confidence”) on average, but could not easily distinguish classes
two and three.
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Chan 2, true spi

kes=100 Chan 3, true spikes=100 Chan 4, true spikes=100 Chan 5, true spikes=100
100 = 1007= 200

il 100

g 0 s AF g 18 >
TL100 ~.100 To100 =
-200 -200 -200 :
o 10 20 0 10 20 0 10 20 0 10 20

o 10 20 0 10 20 0 10 20 0 10 20
an 4, true spikes=100

0 10 20
Chan 1, true spikes=100 Chan 2, true spikes=100 Chan 3, true spikes=100 485'
2{’2 ¢ : 200
: 1]
400 =400
0 10 20 0 10 20 0 10 20 0 10 20
GT spikes 1: mean p GT spikes 2: mean p GT spikes 3: mean p GT spikes 4: mean p
& 1 = 1 Z 1 Z :
o o o o
mos5 Wos o5 o5
= 2 = o
O o O o
0 o L] L]
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
class class class class

Figure 6: The data set was extracted from EC recordings taken during five separate
experiments. Rows 1 to 5 correspond to five classes of EC waveforms and their 5
neuron sources. Row 6 shows a bar chart of NN predictions. Prediction accuracy
was high for classes 1 and 4, but not for the more similar waveforms in classes 2
and 3. The NN was trained on examples from classes 1 to 4 only. Note: the y axis
scales in rows 1 to 5 vary to reveal the waveform shapes.

Figure 7 shows a confusion matrix and an image of the probabilities. The confu-
sion matrix in Figure 7a shows that the NN classified class 1 and class 4 waveforms
with an accuracy of 95.1% and 99.5% respectively. Although classes 2 and 3 are very
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similar, the NN did better than chance, 56.8% and 58.1%. Overall accuracy was
77.6%. Figure 7b shows the same data as an image, where bright yellow indicates,
in a sense, high confidence predictions.
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Figure 7: NN classification of waveforms from four classes: (a) Confusion matrix
shows an overall accuracy of 73.6%, but relatively low accuracy for classes 2 and
3. (b) Image shows that waveforms classified as class 1 or class 4 were made with
high probability (yellow), classifications for classes 2 versus 3 were made with lower
probability (less confidence).

Figure 8 shows the NN’s predictions when given class 5 waveforms. It predicted
that all of them are class 1 waveforms, i.e. with a probability > 0.90.
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Figure 8: NN classification of new waveforms: (a) this bar chart shows low proba-
bility classifications in 3 out of 4 cases, and high probability classifications in 1 out
of 4 cases, (b) the image plot shows that all class 5 waveforms were classified as
class 1 waveforms with a probability of > 0.90.
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4.2 NN classification accuracy versus traditional methods

As Table 1 shows, mean k-NN accuracy over 20 trials was relatively high with
moderate standard deviation, and was almost as fast as k-means. However, the 20
trials for k-NN was done by setting k equal to values from 1 to 20. For any given
value of k, k-NN accuracy is constant. The best k-NN accuracy was (74.69%, k=20),
(74.44%, k=16), and (74.62%, k=13) using wavedec + KS, pca, and 'none’ feature
extraction respectively.

k-medoids was very slow and delivered poor accuracy regardless of feature ex-
traction method or distance metric. PCA feature extraction improved classification
accuracy for k-means, k-means-C, and k-medoids, but not for k-NN.

kmeans used squared Euclidean distance and the k-means++ algorithm [4] for
centroid initialization (default settings). However, the initial centroids can set
manually, by the (name, value) pair (*Start’, C_init), where C_init is a matrix of
the average features for each class, as follows: kmeans(spk_feats, K, ’Distance’,
dmetric, Start’, C_init). This variant of k-means is listed in Table 1 as k-means-
C; it started with the true centroids.

Giving k-means the true centroids to start with (“k-means-C”) did not increase
accuracy if features were extracted using wavelets or PCA. This was because k-
means already uses k-mean++ to find good initial centroids (not purely random
centroids) and it returned the best result out of 10 replications. However, providing
the true centroids to start with did improve accuracy for the case of no feature
extraction, i.e. k-means 63.35%, k-means-C 71.63%.

As Table 2 shows, the NN performed better than the competition regardless
of whether the hidden layer contained 10 or 20 nodes. Concatenation of waveforms
from the four channels significantly improved accuracy over single channel waveforms

(21 data points each).

classifier feature extraction | distance metric mean acc (%) std | time (s)
k-NN wavedec + KS Euclidean 72.99 | 8.96 3.34
k-NN PCA Euclidean 73.08 | 8.74 3.14
k-NN none Euclidean 73.01 | 9.08 2.95
k-means wavedec + KS squared Euclidean 58.01 | 0.04 20.70
k-means PCA squared Euclidean 71.83 | 0.18 0.73
k-means none squared Euclidean 63.35 | 0.03 0.96
k-means-C | wavedec + KS squared Euclidean 58.19 0 19.64
k-means-C | PCA squared Euclidean 71.81 0 0.17
k-means-C | none squared Euclidean 71.63 0 0.11
k-medoids | wavedec + KS squared Euclidean 51.72 | 6.95 135.26
k-medoids | PCA squared Euclidean 58.85 | 15.62 109.24
k-medoids | none squared Euclidean 4741 | 4.45| 131.96
k-medoids | wavedec + KS Mahalanobis 49.95 | 1.90 139.10
k-medoids | PCA Mahalanobis 51.07 | 5.98 | 113.72
k-medoids | none Mahalanobis 46.10 | 1.42 126.62

Table 1: Classification accuracy: traditional methods. 20 trials.
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classifier | nodes in hidden layer | data augmentation | mean acc (%) | std | time (s)
ANN 10 none 76.97 | 0.79 5.65
ANN 20 none 77.20 | 0.87 5.15
ANN 10 concatenation 80.92 | 2.25 4.86
ANN 20 concatenation 81.20 | 2.95 4.58

Table 2: Classification accuracy: neural networks. 20 trials.

5 Discussion

The development of automatic computerized spike-sorting methods has been an
active research topic for several decades [1, 45] and, after great effort, a completely
automated solution has not been found. The spike-sorting problem is similar to the
“cocktail-party problem” of tuning into one of the conversations at a busy party
[9, 30], but if the SNR is too low, even the most scintillating gossip will be lost in
the noise forever.

The waveforms in this report were sampled at 10 kHz and only 21 data points
long, i.e. 10 before and 10 after the peak. This is a relatively small number of
data points for a neural network to learn from, or for wavelets and PCA to extract
features. Those methods are often used for instances composed of hundreds or
thousands of data points.

Nonetheless, the classification accuracy of ANNs was significantly higher than
the traditional methods considered in this report. ANNs are quite flexible, robust,
and can learn from examples in various forms. For example, the ANN performed
better when waveforms from the four channels were concatenated. The methods
that relied on dimensionality reduction techniques and could not exploit this higher
dimensional data format.

Although ANNs are highly flexible and parameterizable, they offer another ad-
vantage. They are not very sensitive to the number of nodes in their hidden layer,
i.e. both 10 and 20 node hidden layer had similar accuracy. But a shallow ANN
trained on a few classes of examples is far from ideal.

ANNs depend heavily on the training set. If a NN with 1 hidden layer and
softmax output is trained on examples from 4 classes, as in this report, and then
asked to predict the classification of samples from a 5th class, it is likely to classify
all of them as one of the four classes that it was trained on with a probability p >
0.90, e.g. p =(0.95, 0, 0, 0.05) for the four classes respectively Essentially, this NN
will not say, “I don’t know” ... I don’t recognize the new samples as being similar
enough to anything I was trained on.”

And yet this ANN can be even worse. A test input of all zeros was classified as a
class 1 waveform. Therefore the ability to classify an input as unknown is essential.
Otherwise the ANN might generate rational classifications most of the time and
complete nonsense when fed pathological data.

ANNSs can be optimized, but ultimately a neural network is only as good as its
training set. Therefore, the network will be most useful after it has been trained
on a database of labeled waveforms of interest, including negative examples. Then
after new waveforms are classified, they can be checked against a distance metric. If
the distance is greater than a defined threshold, then the waveform is not recognized
at all and can be discarded.
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6 Future Work

This report has presented empirical evidence that the addition of ANNs to a spike
sorting pipeline may improve classification accuracy. However, ANN methods could
also be tested on several other data sets that include some form of ground truth.

A more recent ground truth data set is available from the Kampftf Lab. Their
procedure for precisely aligning two probes for in vivo “paired-recordings” is de-
scribed in [52]. Optically-calibrated mechanical manipulators positioned two probes
at the same location in the brain. To obtain ground truth data, the spiking activity
of a single neuron was monitored with a dense extracellular silicon polytrode and a
micropipette [52].

Synthetic data sets, where spike times and classes are known, and Neurocube
software [13], which uses detailed neuron models to simulate realistic EC recordings,
can be obtained from The Centre of Systems Neuroscience at the University of
Leicester.

Use Neurocube to generate a database of examples for an ANN to learn from,
including examples of background noise and artifacts, then assess whether its clas-
sification of new data is potentially useful.

The performance of ANN pipelines can be compared with state of the art soft-
ware such as Kilosort [54] or Kilosort2, on ground truth data. And, perhaps as the
ultimate test, the performance of ANN enhanced pipelines can be compared with
Kilosort2 on data recorded by Neuropixels by domain experts where ground truth
is not available.

Links to the data sets and software:
e Cortex Lab: https://www.ucl.ac.uk/cortexlab/
e CRCNS datasets, hippocampus: https://crcns.org/data-sets/hc.

e Buzsaki Lab, description of CRCNS datasets: https://buzsakilab.com/wp/
resources/datasets/

e Kampff Lab: http://www.kampff-lab.org/validating-electrodes, [52].

e Centre for Systems Neuroscience, data sets and software: https://www2.le.
ac.uk/centres/csn/software.

e Kilosort: https://github.com/cortex-lab/KiloSort

e Kilosort2: https://github.com/MouseLand/Kilosort2
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7 Appendix

7.1 Signal processing: bandpass filters

The Signal Processing Toolbox in Matlab includes the function butter. This func-
tion was used to implement a second order Butterworth bandpass filter to prepare
the data for spike detection. The ideal aim of this filter is to have uniform sensi-
tivity to the wanted frequencies, and zero sensitivity to unwanted frequencies, i.e.
completely reject unwanted frequencies [10]. In practice the frequency response of
the Butterworth filter is maximally flat in the passband, and attenuates rapidly in
the stopband (less than and greater than the passband) [§].

The choice of filters is important. Finite Impulse Response (FIR) filters are pre-
ferred over Infinite Impulse Response (IIR) filters. FIRs work with a convolution
of the signal, while ITRs work with convolution and recursion. IIRs are more com-
putationally efficient, but they can cause distortions of phase and waveform shape
[57].

7.2 Spike Detection: median absolute deviation

This threshold is defined as a multiple of the median absolute deviation (MAD)

X
Thr = K X oy; 0, = median X1 (1)
0.6745

where K is the multiple, X is the filtered data (mean is zero), and the denominator
0.6745 is derived from the inverse of the cumulative distribution function for the
standard normal distribution evaluated at 0.75 [58]. The area under this curve left
of 0.6745 standard deviations equals 0.75.

The median is less sensitive than the mean to the firing rate, large spike am-
plitudes, and artifacts. For example, as Figure 9 shows, the traditional standard
deviation estimate of noise increases rapidly with the firing rate, while MAD re-
mains relatively flat.
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Figure 9: Median absolute deviation (MAD) versus standard deviation. The con-
ventional mean based estimate of the standard deviation of background noise (red)
increases rapidly with firing rate, while the median based estimate (blue) increases
slowly. Image [57].

In general, setting the threshold for spike detection involves a trade-off between
false positives and false negatives [7]. While a higher threshold may prevent more
false positives, more true spikes may be discarded. However, at some point, wave-
forms that are too far from their centroid, nearest neighbors, or some other class
landmark, can be discarded as outliers, i.e. tossed in a bin of unrecognized wave-
forms. So in this case a threshold that is slightly too low may be preferred.

Although outside the scope of this report, picking the right threshold is less im-
portant when using templates. The SpyKING CIRCUS algorithm uses a clustering
step followed a template match step [67].

7.3 Feature extraction

7.3.1 Waveform features can be extracted by wavelet decomposition

Wavelets can be used to reduce the dimensionality of data. This section provide
only a very brief summary of wavelets focused on discrete wavelets.

A wavelet is a sharp wave-like oscillation with a zero mean and a corresponding
scaling signal. Unlike sinusoids, which extend to infinity, a wavelet exists for a
finite duration. Wavelets come in different sizes and shapes. Families of discrete
wavelets include Coiflets, Daubechies (includes Haar), and Symlets. Well known
wavelets such as Mexican hat and Meyer are continuous, while Morlet wavelets are
complex-valued. [https://en.wikipedia.org/wiki/Wavelet]

The discrete wavelet transform (DWT) convolves the data (a spike in this case)
with the wavelet to get detailed coefficients (cD), and the scaling signal to get the
approximate coefficients (cA), as shown respectively in Figure 10.
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Figure 10: The Discrete Wavelet Transform (DWT). Image: Bhagat and Moore-
Kochlacs, An introduction to spike sorting, Center for Brains Minds + Machines,
MIT, video, 24 March 2017.

7.3.2 Scaling and shifting can be applied to wavelets.

Scaling refers to stretching or shrinking the signal in time

where the scale factor s is a positive value and corresponds to how much a signal is
scaled in time. It is inversely proportional to frequency. Scaling a 10Hz sine wave
by 2 results in a 5Hz sine wave (reduces frequency by 1 octave, i.e. loga(10/5) = 1
octave).

There is a reciprocal relationship between scale and frequency with a constant of
proportionality called the "center frequency” of the wavelet. Unlike the sine wave,
the wavelet has a bandpass characteristic in the frequency domain. The equivalent
frequency is defined using this equation

_ G
eq — ﬁ
where C} is center frequency of the wavelet, s is the wavelet scale, and 6t is the
sampling interval. A larger scale factor results in a stretched wavelet, which corre-
sponds to a lower frequency. A smaller scale factor results in a shrunken wavelet,
which corresponds to a high frequency. A stretched wavelet helps in capturing the
slowly varying changes in a signal; a compressed wavelet helps in capturing abrupt
changes.
Shifting a wavelet delays or advances the onset of the wavelet along the length
of the signal. A wavelet represented with this notation

ot — k)

is shifted and centered at k. The wavelet is can be shifted to align with the feature
of interest in a signal.
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Key applications of the continuous wavelet analysis are: time frequency analy-
sis, and filtering of time localized frequency components. The key applications for
Discrete Wavelet Analysis are denoising and compression of signals and images.

7.3.3 Discrete wavelet transforms (DWT)

DWT helps represent many naturally occurring signals and images with fewer co-
efficients. This enables a sparser representation. The base scale in DWT is set to
2.
Dyadic scaling and shifting. This kind of sampling eliminates redundancy in
coefficients. Scaling: ‘
27, (j=1,2,3,4...)

Translation:
2im  (m=1,2,3,4..)

The detailed coefficients contain the high frequency components of the spike
and, therefore, contain most of the energy. The approximate coefficients (“rough
coefficients”) contain the low frequency components of the spike and far less energy.

7.3.4 Principal components analysis

Algorithm 5 shows pseudocode for PCA. One approach is to set N equal to a fixed
number, construct the covariance matrix with cov, do eigenvalue decomposition
with eig, sort eigenvalues in descending order, extract the first N eigenvectors, and
project the data matrix M (waveforms, in this report) onto a lower dimensional
space using matrix multiplication.

Data: a matrix of waveforms
Result: dimension reduction

N = 3;
C = cov(M);
[V, D] = eig(C);

[eigen_values, eigen_value_indices| = sort(diag(D), ‘descend’) ;
V_low = V(:,eigen_value_indices(1:N)) ;
PC =M * V.ow;

Algorithm 5: Pseudocode for principal component analysis. The length of
each waveform depends on the sampling rate. In this report they were 21 data
points long (about 2 milliseconds). PCA can usually reduce this down to about
3 principal components.

7.4 Clustering metrics

Matlab’s kmeans function uses the cluster quality metric silhouette by default. It
provides a graphical representation of how well each data object has been classified
[61], and a score. Essentially, it measures how similar each object (vector of wave-
form features) is to its cluster (cohesion) relative to other clusters (separation). So,
for each object i in its own cluster Cj, let

. 1 .
G(Z)ZICZ-I——l > d(i,g)

JEC; i#]
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be the average distance between i and all other objects in C;, where d(i, j) is the
distance between ¢ and j in this cluster. The average dissimilarity of ¢ to objects in
another cluster is just the mean distance of 7 to those objects. The cluster with the
smallest dissimilarity b(7), as calculated by the following equation,

b(i) = m1nz¢]| o Z d(i, 7),
j

j€C;

is the neighboring cluster of 1. The silhouette value of object i is

M) —al)
S0 = axfa(o), by 1G> !

and

s(i) = 0,if |Cy] > 1

The mean s(7) for all objects is a measure of how well the data has been clustered.
This value ranges from -1 to +1, where a high value indicates high cohesion and
separation, and the quality of the clustering is high. Low or negative values indicate
poor quality and, therefore, too many or too few clusters. The silhouette value can
be calculated with any distance metric, including squared Euclidean distance, the
Manhattan distance, or the Mahalanobis distance [43].

7.4.1 Distance metrics for clustering

Given some number of waveforms, each represented by a feature vector of length n.
The distance between two feature vectors p and ¢ in n dimensional space may be
calculated by many methods [ http://www.mathworks.com |, including:

the squared Euclidean distance:

n

d(p.q) =Y (¢ — i),

=1

the Euclidean distance (straight line distance):

the Mahalanobis distance:

d(p,q) =/ (p— )M (p—q)T

where M is the covariance matrix, and 7" indicates the transpose.

If M is the identity matrix, the Mahalanobis distance reduces to the Euclidean
distance. If M is diagonal, then the resulting distance measure is called a standard-
ized FEuclidean distance
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where s; is the standard deviation of p; and ¢; over the sample set. [ https://en.
wikipedia.org/wiki/Mahalanobis_distance |

7.4.2 Cluster quality metric options

Matlab function evalclusters provides several metrics for the evaluation of clus-
ters.

The following creates a clustering evaluation object containing data used to
evaluate the optimal number of data clusters:

eva = evalclusters(x,clust,criterion)

where x is the data to be clustered, clust is the clustering algorithm, such as
kmeans, and the criterion is CalinskiHarabasz, DaviesBouldin, gap, or the de-
fault silhouette. Additional options can specified by one or more name-value pair
arguments. For example

eva = evalclusters(x,’kmeans’,’silhouette’,’KList’,[1:6]),

would evaluate the resulting clusters with the silhouette criterion for k=1,2,3,4,5,6
and identify the optimal value for k. [ https://www.mathworks.com/help/stats/
evalclusters.html |

How can we assess unit quality? See Quantitative measures of cluster quality for
use in extracellular recordings [64].

Given data point P and data distribution D, the Mahalanobis distance is a
measure of the distance between P and D. In this report, P is vector of waveform
features, D is a cluster of waveforms, and the mean of D is the cluster’s centroid.

The Mahalanobis distance is a multi-dimensional generalization of measuring the
distance between a point and a center in terms of standard deviations. This distance
is zero if P is at the mean of D, and increases along each principal component
axis as P moves away from the mean. If each of these axes is re-scaled to have
unit variance, then the Mahalanobis distance corresponds to standard Euclidean
distance in the transformed space. The Mahalanobis distance is unitless and scale-
invariant. It takes into account the correlations of the data set, whereas Euclidean
distance ignores the properties of a distribution (cluster) [ https://en.wikipedia.
org/wiki/Mahalanobis_distance ].

The Mahalanobis distance d?(i, C') of spike i from the center of the cluster C' is
defined by the formula

d*(i,C) = (X; — pe) "M (Xi — pe)

where X; is the feature vector for spike 7, C' is the mean of the values of the
spikes in cluster C'; and M¢ is the covariance matrix of the spikes in cluster C' [64].
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