
The Methylation Machine Learning Challenge:
pair-up methylation profiles by subject from two

timepoints

Peter Hebden

25 January 2019

1 Introduction

This machine learning challenge is to match pairs of vectors of equal length that
contain floating point numbers. Each vector represents a methylation profile. There
are profiles from 74 subjects; two profiles per subject, one from each visit to the
clinic. Full methylation profiles are 870K sites long, and they would be easy to
match. However, can an algorithm match profiles with just 217 sites?

In the training set, the first number in each row of data identifies the subject. In
the test set, the 1st number in each row is just a row number.

Given a randomly shuffled set of profiles from the second visit, match each row
of the visit 1 profiles with each row of the unseen visit 2 profiles and provide a
probability that the match is correct.

Evaluation is by log-loss. In theory, to get the maximum score, make correct
predictions of a match with a probability p=1, and correct predictions of a mismatch
with a p=0, e.g. log(1) + log(1 - 0) = 0. In practice, due to the way the system
computes the scores, aim for probabilities that are between 1 and 0, e.g. giving p=0
for a correct match results in log(0) and a large penalty. But for convenience and
clarity, I will use p=1 and p=0 in this report.

Matching two vectors of numbers based on a distance metric sounds easy. Perhaps
just calculate the squared Euclidean distances between the first visit 1 profile and all
visit 2 profiles and predict that the two closest profiles are from the same subject,
assign that match p=1 and all others p=0; Then do the same for the second visit 1
profile, and so on. But that did not get a good score. So, what worked?

1



Well, the data set is unusual. There are only a few positive examples to learn
from, and many negative examples. It seems impossible to build a classifier that
separates matches from mismatches with a classic machine learning algorithm. There
are many features, but perhaps some are noise or redundant. I tried PCA to reduce
the dimensions and extract the most important features, and then applied a distance
metric. Greater distance from a visit 1 profile implies a lower probability. No luck.

For this data set, the Pearson correlation coefficient provided a good start. In
theory, use pairwise correlations as the measure of distance, and a tight probability
distribution that assigns close to p=1 for the pair with the highest correlation, and
close to p=0 for the other pairs. Do this for each visit 1 profile. That worked okay.
After adding some details, this algorithm iterated over the data set, slowly tightening
the probability distribution and knocking out profile features one at a time if that
knock out improved the score. The best algorithm used a form of gradient descent
that slowly tightened two parameters of the probability distribution. Final score:
0.00186.

for each epoch
for each feature

knock out feature temporarily
cc = corrcoef(v1, v2); {do pairwise correlations}
distances = 1-cc; {distances for each pair}
sd = std(distances);
z scores = distances/sd;
mu = minimum(z scores);
probabilities = M *(1-normcdf(z, mu, sigma)) {calc probs}
score probabilties
if knockout improves score → knock out feature permanently

end

if odd epoch → decrease sigma
if even epoch → increase M

update probablities
update scores

end

Figure 1: Pseudo code for profile matching. Keep trying slowly, then give up.

2


	Introduction

