
Data-Centric Routing using Bloom Filters in
Wireless Sensor Networks

Peter Hebden, Adrian R. Pearce
NICTA Victoria Research Laboratory

Department of Computer Science and Software Engineering, University of Melbourne
Melbourne, Australia,{phebden,adrian}@csse.unimelb.edu.au

Abstract

This paper presents a paradigm for reducing communication
costs in wireless sensor networks. The first component is our
Distributed Asynchronous Clustering protocol (DAC), which
self-organises the network into an infrastructure that supports
in-network processing, routing, and deployment. The second
component, and the focus of this paper, is a data-centric routing
protocol where cluster heads build and maintain sets of Bloom
filters to inform routing decsions and filter out unproductive
messages. While other data-centric protocols use a flat topology
and rely to some extent on flooding, our protocol exploits
a two tier hierarchy to provide an adaptable, scalable, and
intelligent routing service that is expected to reduce the number
of transmissions and extend network lifetime.

1. INTRODUCTION

Large scale wireless sensor networks (WSNs) of autonomous,
resource constrained nodes may be required to operate for
long periods of time without maintenance. In such networks,
information of interest should be delivered to the application
in a timely and energy efficient manner according to protocols
that minimise wasteful radio transmissions.

In general, different applications may require different com-
munication protocols or strategies to maximise network life-
time. Here we consider a data gathering application and its
data-drivennetwork of wireless sensors. In a data-driven net-
work, a query instructs each node to sense its environment at
a certain rate, for a period of time, and transmit matching data
back to the sink. Network traffic is composed of packets that
flow periodically between many sensors and one or more sinks.
While sensor data of interest must be guided to sinks, queries
should be disseminated to appropriate nodes without incurring
undue communication costs. This becomes more difficult where
there are numerous sinks injecting a variety of queries intothe
network, and only a small fraction of sensors generate data of
interest for each query.

To reduce communication costs in large data gathering
sensor networks, we propose a combination of techniques from
clustering,data-centricrouting, and Bloom filters. We use the
Distributed Asynchronous Clustering (DAC) protocol [1] to
generate a near optimal number of well separated cluster heads.
As is generally the case, sensor nodes are partitioned into aset

of clusters where each sensor may only transmit data to its
cluster head. Cluster heads process member data and/or reports
from other cluster heads, make routing decisions, and forward
the result to another cluster head or the sink. While DAC self-
organises the network into hierarchical clusters to support in-
network processing, its well separated cluster heads provide an
infrastructure for intelligent routing.

Directed diffusion [2], [3], [4], [5] is a well know data-
centric routing protocol that has been recognised as the right
solution [6]. However, it does not take into account wireless
link quality, and it does not scale well in networks where there
are many sinks transmitting many different queries. Essentially,
each node’s routing table grows too large and a more space
efficient data structure is needed.

Flooding the network with a message increases the probabil-
ity that all reachable nodes will receive it. However, an ideal
energy efficient protocol would only transmit a message when
necessary. If cluster heads are enabled with an adaptive and
scalable routing capability, then large systems can move away
from flooding and toward optimal messaging. In this paper
distributed data structures based on Bloom filters [7] are used
by cluster heads to make better routing decisions [8].

Section 2 introduces Bloom filters, and Section 3 discusses
WSNs and some design considerations. Section 4 provides
some background information on routing, and in Section 5
we present our Bloom Gradient Routing (BGR) protocol. And
finally, our conclusions.

2. BLOOM FILTERS

Bloom filters were introduced in 1970 when computer memory
was extremely scarce [7]. Early applications include hyphen-
ation, spelling dictionaries, and joining tables in databases.
With the advent of the Internet, their usefulness was rediscov-
ered. Essentially, if an application can tolerate a low rateof
false positives and memory is scarce, then Bloom filters may
provide a practical optimisation technique [9]. Since the WSN
domain is far more resource constrained than the Internet, we
expect to see many new applications of Bloom filters. Next we
provide some details on this data structure and an exemplary
Internet application.

A. The Data Structure

A Bloom filter is a space efficient, randomised data structurefor
representing a set and supporting set membership queries [7].
It is a filter in the sense that it can be used tofilter out an
element that does not belong to the set. The space efficiency
benefit is gained at the cost of a loss of information and a low
rate of false positives.

The original Bloom filter used a simple bit vector, i.e. one bit
per cell. To construct a filter, the following procedure is used.
Supposen elements in setS from a large universeU , and we
havem bits of memory available. The hash area may be defined
asm individual bits with indices0 throughm− 1. Generatek
different indices withk different hash functions applied to each
element, and set those bits to1. Figure 1 shows a filter after one
element has been stored. To test an unknown element for set
membership, follow the same procedure except just compare
each of thosek bits to1. If all are equal to1, then the element
is recognised and probably is a member, else it definitely is not
a member.

Fig. 1: Storing elements in a Bloom filter: Up to k bits will be set to1 by
k hash functions and one element.

A false positive occurs when we test a new element and
it hashes tok bits that have already been set to1 by one or
more elements inS. For example, given a filter where50% of
the bits have been set to1 and one hash function, the expected
false positive rate would be0.5. However, if two hash functions
are being used, the probably that an unseen element will test
positive is0.25.

Usually we want to minimise the rate of false positives
while using a limited amount of memory. Givenn elements
andm bits of memory, what is the optimal numberk of hash
functions? An optimalk turns on 50% of the bits when the
filter is built [9].

k =
m

n
ln 2 (1)

The error rate depends onm, k and n. Let p equal the
probability of a bit being zero after the filter has been built.
Let f equal the probability of a false positive when the filter
is being tested.

p =

(

1 −
1

m

)kn

(2)

f = (1 − p)
k (3)

Notable properties of Bloom filters include: no false nega-
tives, false positive rate is tunable, space requirement does not
depend on element size, bitwise operations on Bloom filters
are extremely efficient, and they may be implemented with
more than one bit per cell to support counting Bloom filters.
Consequently, they have been found to be useful in network
applications [9].

B. An Exemplary Internet Application

Summary Cache: A Scalable Wide-Area Web Cache Sharing
Protocol is one of the most cited papers on using Bloom filters
in the Internet context [10]. In 1998, when the authors first
presented their protocol, web cache sharing was not widely
implemented due to the overhead of existing protocols.

Popular web sites may be served by a group of cooperating
web servers, known as proxy servers, where each server hosts
a subset of the site’s pages. Each server hashes its directory
to a counting Bloom filter and sends a copy to the group.
When a server receives a query, it tests its set of filters
for a hit to determine which server in the group probably
hosts the requested page. When a host deletes a page, it
decrements cell values in its filter. Each directory entry was
represented with just8 bits; this reduced storage requirements
and communication overhead [10].

Cluster heads may play a role similar to web proxy servers
in WSNs. As we will explain in Section 4, they could maintain
sets of Bloom filters that represent messages received from data
sources and data sinks, and use that information to decide where
to forward a query or sensor data.

3. NETWORKING W IRELESS SENSORS

In this paper we have assumed a WSN of small, power
constrained sensor nodes. The most essential function of its
network layer is to route data from source to destination.
However, a protocol that simply minimises the number hops
is not well suited to WSNs. The packet reception rate (PRR),
opportunity for in-network processing, and distance of each link
should be considered.

PRR: Wireless communication is notoriously unpredictable.
The quality of each link depends on the environment, frequency
spectrum, modulation schemes, and the hardware itself. Link
quality can vary suddenly with time and small spatial displace-
ments. Zhao and Govindan systematically evaluate packet in
delivery in [11]. Connectivity analysis, neighborhood manage-
ment, and routing is explored in [12].

In-network processing: Hierarchical clustering creates op-
portunities for in-network processing. For example, instead of
thousands of sensing nodes congesting the network with data
transmissions, cluster heads aggregate data by doing some com-
putation (max, min, mean, median, summation, etc.), thereby
reducing the quantity of data transmitted.

Distance: The energy required for radio communication
rises dramatically with distance. In general, the output power
required to transmit over distanced is proportional todn where
n >= 2 and depends on distance and the environment [13]. In
such a network, techniques for minimising power consumption

are essential for prolonging network lifetime, and since radio
communication is by far the most power intensive task, we
designed our clustering and routing protocols to reduce this
cost.

Naturally, well separated cluster heads play an important role
in reducing energy consumption and network latency [1]. BGR
uses cluster heads and sets of Bloom filters to increase expected
network liftetime.

4. DATA -CENTRIC ROUTING

WSN messages must be routed between sink(s) and data
sources via resource constrained nodes such that QoS and
lifetime guarantees are met. Here we assume that the network
has used the DAC protocol [1] to self-organise into a set of
clusters with well separated cluster heads that support theflow
of information between the sink(s) and many sensors. In a
typical data gathering application, the sink sends a query to the
network and data of interest flows back to the sink. To reduce
unnecessary transmissions, each cluster head needs routing
information to forward queries in the direction of relevantnodes
and sensor data in the direction of the interested sink.

In Section 5 we will present a scalable, adaptive, and energy
efficient protocol called Bloom Gradient Routing (BGR). This
protocol uses Bloom filters to store information about queryand
sensor messages received from proximate nodes and inform
routing decisions. Before presenting BGR in more detail,
Sections 4-A and 4-B provide some background on routing
and related work.

A. Routing Protocols

Routing protocols may be classified asaddress-centricor data-
centric. Address-centric is better suited to networks with a
small number of possible destinations because small explicit
routing tables may be maintained at each node. Data-centricis
better suited to networks with a very large number of possible
destinations and where the application is typically interested in
gathering data or information from the network but not from
individually addressable nodes, i.e. explicit routing tables are
not required.

In address-centric routing, packets are routed from one
addressable node to another via the shortest path according
to some metric. Data-centric routing is more complex. Queries
in the form of named datashould be routed from the sink to
sensor nodes that are likely to have data of interest. Sensornode
data should be routed to the sink along paths that facilitate
data aggregation. Reverse multicast trees provide paths that
naturally facilitate data aggregation. Figure 2 shows an example
where the number of transmissions has been reduced from 6
to 4. However, optimal data aggregation requires the formation
of a minimum Steiner tree on the network graph and is NP-
complete [14], and while approximation algorithms do exist,
we assume that data aggregation is done opportunistically.

B. Related Work

Reverse path forwarding is a general approach to data dis-
semination [15]. Essentially, sensor data flows in the reverse
direction of query propagation to reach the sink.

Fig. 2: The network on the left isaddress-centric: each packet is routed by
the shortest path to the sink. The network on the right isdata-centric in the
sense that packets are routed to facilitate data aggregation.

1) Directed Diffusion:This [2], [3], [4], [5] is an important
data-centric routing protocol for flat sensor network topologies.
It provides mechanisms for routing queries and sensor data.
Each sensor uses an attribute-based naming scheme that names
the data it generates according to one or more attributes.
Initially the sink has no prior knowledge of which nodes
probably have data of interest. So, it floods the network with
the query, i.e. the query is propagated throughout the network
by adjacent nodes.

The interaction of disseminated queries and matching sensor
data establishgradientsfor data to flow toward the sink that
expressed that interest. For example, a sink may flood the
network with an interest in the form:

type : temperature, op : GT, value : 20
Sensors with matching data generate attribute-value data tuples
in the form:

type : temperature, id : 12, value : 21
The data is routed along reverse paths to the query’s source.
After the sink receives this data, it reinforces some paths to the
data sources. Based on the strength of the gradient, intermediate
nodes forward sensor data and queries for data along efficient
paths. This particular version of Directed Diffusion is known
as two-phase pull [16].

2) Gradient Based Routing:A number of other researchers
have also found the gradient concept useful [17], [18], [19].
Messages flow through a multi-hop network according to the
gradient stored in each node. In some implementations, gradient
is based on the “height” of a node, which is proportional to its
distance from the sink [17]. In that case, data flows downhill
toward a sink, and queries flow uphill toward sensor nodes.
However, regardless of implementation, gradient indicates di-
rection, i.e. the next node on a multi-hop path.

Gradient Broadcast (GRAB) addresses the problem of robust
data forwarding to the sink via unreliable sensor nodes over
error-prone wireless channels [18]. Their sink maintains acost

field, and each node maintains an indicator of the cost of
forwarding a packet from itself to the sink. Data flows toward
lower cost nodes, so the cost field implies a gradient because
direction is implicit. However, the cost value at each node is not
the same as the gradient (vector) defined in Directed Diffusion.
For robust delivery, GRAB uses a mesh of multiple paths from
source to sink. The source assigns acredit to each report it
transmits to control the degree of path redundancy, i.e. more
credit translates into a wider mesh of multiple paths.

Gradient-Ascending Stateless Protocol (GRASP) was pre-
sented in [19]. In GRASP, a forwarding history is stored at
each node on the path from source to sink - each history is
represented by a Bloom filter. When a source node transmits a
packet, the packet’sorigin addressis hashed to a Bloom filter
at each node along the multi-hop path to the sink. GRASP
was primarily motivated by the theory that membership-based
broadcast is more energy efficient than flood-based dissemina-
tion. However, because GRASP defines a protocol for routing
queries from a sink to specific, addressable sensor nodes, we
see it as anaddress-centricprotocol. This is in contrast with
many research efforts which emphasise thedata-centricnature
of WSNs.

5. BLOOM GRADIENT ROUTING

The design of BGR reflects the costs and benefits of flooding
for message dissemination. Flooding the network guarantees
delivery, but at the cost of implosion, overlap, and resource
blindness [20]. An interesting paper by Braginsky and Estrin
presentsRumor Routing, which is proposed as a compromise
between flooding queries and flooding sensor data [21].Gos-
sip Routingalso provides a scheme that reduces flooding -
nodes flood by sending the message to random neighbors and
redundant connectivity allows most nodes receive it [22]. In
contrast, BGR implicitly learns from application, network, and
device characteristics. This information is stored and shared in
the form of Bloom filters and aggregates. The sink is able to
decide, with some degree of confidence, whether or not it is
worth sending a query into the network. If so, the query only
needs to be sent to the cluster heads - a small percent of nodes.

A. Bloom Filter Gradients

The combination of hierarchical clustering andBloom filter gra-
dientsprovides a simple technique for reducing transmissions
where queries are disseminated to unkown data sources in the
network rather than to nodes with specific IDs. Figure 3 shows
one cluster head with eight pairs ofport Bloom filters(small
rectangles), one pair for each port, and acluster Bloom filter
at the center of cluster headCH . The cluster Bloom filter
represents data messages from cluster member sensor nodes.
When a cluster head receives a query, it uses its cluster Bloom
filter to decide whether or not to query its own members.
The port Bloom filters represent received data from specific
neighbors, and are used to decide whether or not to forward
the query to each neighboring cluster head. In Figure 3, the
small white rectangles indicate empty, the light gray indicate
received data, and the black indicate received queries. Next we

discuss using port filters for routing between sinks and cluster
heads in more detail.

Each sink transmits a message to establish the shortest path
from each cluster head to each sink. We assume that there
are a relatively small number of sinks, and storing next hop
path data for each sink does not require a significant amount
of memory. However, a simple hop count metric does not
necessarily define the best way to route data back to the sink,
i.e. a small number of long hops may be less reliable. A better
metric might consider several properties of each link such as
Euclidean distance, energy levels of transmitter and receiver,
and packet reception rate.

Figure 4 shows four cluster heads and their gradients im-
plemented with Bloom filters. Here we assume that each
cluster head has eight adjacent cluster heads (“neighbors”) and
eight ports. Each port maintains two Bloom filters: one for
received query messages and one for received data messages.
They represent what has been received from adjacent cluster
heads. Each filter accumulates a data-centricresiduewhen the
payload of each received message is hashed tok cells in the
port’s Bloom filter. In a one bit per cell filter, this creates
a representation of what messages have been received from
a specific neighbor. After messages have been received by a
node and stored in its filters, the node can evaluate its filters to
decide which neighbor(s) to forward a query or data message
to. As shown in Figure 4, query messages (solid arrows) follow
matching data residues, and data messages (dashed arrows)
follow matching query residues. However, each cluster head
needs information about the probability that a destinationof
interest is reachable via one neighbor versus another - suchas
indicated by a received message count.

Fig. 3: Cluster Head Enabled with Bloom Filters: one pair at each port for
each cluster head neighbor, and onecluster filter (center square).

B. Counting Bloom Filters

Counting Bloom filters are a space efficient representation of
the number of times an element has been stored. In BGR,
messages are hashed to a Bloom filter such that each time a
certain attribute-value pair, orelement, is received,k cells in the
filter are incremented. After the received message is processed,
the node may forward the message to its neighbor(s). By testing
the element against the Bloom filters for each neighbor, the
node can determine which neighbor(s) to forward to.

BGR routing decisions may depend on several parameters,
but here we assume a simple case where each received message
is forwarded to the highest scoring neighbor(s). When a node
is ready to forward a message, it tests the filters for its other
neighbors. If none test positive, it forwards the message toall
other neighbors. If one tests positive, it forwards the message
to that neighbor. However, if more than one tests positive, it
must choose the best neighbor(s) for the message according to
a scoring function. For a given message, the highest scoring
filter will be the one with the largest minimum count.

score(filter) = min(hi=1..k : filter[hi(element)]) (4)

In other words, for hash functionsh1..k, a filter is scored
by hashing the message of interest tok cells in the filter;
the minimum count is the score for that filter. A higher score
indicates a stronger gradient from that neighbor, so the packet
is forwarded out the port(s) represented by the highest scoring
filter(s).

C. Adaptation

As discussed above, a cell’s count is incremented each time an
element hashes to its location in the Bloom filter. If we assume
just 4 bits per cell, then a cell becomes saturated after 15 hits.
This leads us to two closely related problems. First, when a
cell becomes saturated it is not able to record the successful
reception of new packets. Network conditions may change such
that good links go bad. In other words, the network will lose its
ability to adapt to recent events. Second, the cell counts may
reflect stale information.

BGR adapts to change by applying a decay function to
some filter cells each time a new packet is received. The
message is hashed tok cells. For each cell, the decay function
will decrement a cell’s function according to a probability
distribution. The probability of decayp depends on the cell’s
count and maximum value:p = count/max.

Next each cell’s value is incremented to record the current
message. This procedure guarantees that counts stay within
range and facilitates adaptation without explicitly considering
the passage of time. The decay function could also be appliedas
a function of count and time, where decay rate is an application
specific parameter.

D. Link Quality

Link quality, as measured by message delivery performance,
may be seen as the most basic aspect of wireless commu-
nication. Ideally, a simple mechanism would measure actual

performance of links, which may be asymmetrical, and discard
links to poorly performing neighbors. It has been estimated
that, depending on the load, anywhere between 50% and
80% of communication energy is wasted on repairing lost
transmissions [11].

The counting Bloom filters maintained by the cluster heads
also serve as a topology control mechanism which favors higher
quality links over lower quality links. Successful transmissions
increment counters at the receiver and, in effect, “pull” mes-
sages along the more reliable paths.

Fig. 4: Four Cluster Heads and their Filters: messages leave a residue as
they are routed via cluster heads.

E. Self-Organisation and Data Discovery

BGR reduces unproductive communication by disseminaiting
information proactively. During cluster formation each sensor
transmits its measurements to its cluster head. Each cluster
head stores member data in its cluster Bloom filter and sends a
copy to the sink(s). These filters are copied to cluster head port
Bloom filters en route up toh hops aways from their origin,
whereh is a tunable parameter. The subsequent transmission
of queries and data, and the residues they leave in port Bloom
filters, build multi-hop paths between cluster heads and the
sink(s). As a result, a hierarchy of Bloom filters is built that
filters out unproductive query and data transmissions. At the
top level, the sink can evaluate its set of cluster Bloom filters
to decide whether to query the network or not. Each cluster
head can examine its port Bloom filters to help decide where
to forward a query. It can also evaluate its own cluster Bloom
filter to decide whether or not to query its members.

Next we describe part of this filtering process in more
detail. As in Section 5-A, each cluster head maintains a set
of Bloom filters. One represents data reported directly from
cluster members directly, and the others represent query ordata
sources likely to be found via each neighbor. However, instead
of assuming just two Bloom filters for each port as we did
in Section 5, here we assume two arrays of Bloom filters for

each port. This compound data structure can be use to represent
not only what has been received from each neighbor, but also,
from how far away. The first filter in each array represents data
received from cluster heads one hop away, the second from two
hops, and so on.

Suppose we want data from sensor nodes that measure
moisture M, temperature T, and salinity S. Such a tuple’s
format could be represented by a set of strings:M = 40, T =
20, S = 10. Suppose the application is interested in data
from sensor nodes where moisture levelsM range from40
to 49, temperaturesT from 20 to 29, and salinityS from 10
to 19. First the query must be routed to cluster heads that,
according to the port Bloom filters, probably have such data.
Here we assume that measurements were binned into deciles
before hashing. We can test the elements of our query for set
membership by hashing each element’s string representation:
hash(M = 40) ∧ hash(T = 20) ∧ hash(S = 10) to the
cluster Boom filter. The order that elements are hashed does
not matter. The query tests negative as soon as an element
hashes to a zero in the Bloom filter. If the query tests positive,
then such data is probably in the cluster head’s subtree. Second,
the cluster Bloom filters at each cluster head must be tested for
set membership. If the query test positive, then one or more
cluster members probably have data of interest.

Although this paper has focussed on data-centric routing,
other elements such as sensor IDs could also be stored in Bloom
filters and used for routing or other functions where testingfor
set membership is useful.

6. CONCLUSION

We have presented a scalable paradigm for messaging in a WSN
where the DAC protocol was used to self-organise the network
into clusters and BGR was used for routing. A hierarchy of
Bloom filters were used by the sink, cluster head ports, and
each cluster head itself to filter out unpromising transmissions.

Cluster heads used Bloom filters to make data-centric routing
decisions based on past events, explicit and implied shortest
path information, and the quality of each wireless link. Each
cluster head was assumed to have wireless communication links
with up to eight neighboring cluster heads. The end points of
each link were considered to be a port for transmission or re-
ception. The residue of each message received was stored in the
receive port’s Bloom filter, so successful message transmissions
left a reverse trail for other messages to follow. Data messages
followed query message trails back to a sink or sinks, and
query messages followed data message trails to sensor nodes.
Successful transmissions reinforced the trails, so the strength of
each trail was an indication of link quality. In addition, because
some nodes may run low on power and network topology may
change over time, our routing protocol was designed to be
adaptive. A decay function was applied to each Bloom filter to
prevent over saturation and to make recent events more likely
to influence routing decisions.

We believe that when BGR is implemented on an infras-
tructure of well separated cluster heads such as generated by
DAC, the result is a network that is self-organising, scalable,

adaptive, reliable, and more energy efficient than other data-
centric protocols that rely on flooding or random forwarding.

REFERENCES

[1] P. Hebden and A.R. Pearce. Distributed Asynchronous Clustering for
Self-Organisation of Wireless Sensor Networks,Fourth International
Conference on Intelligent Sensing and Information Processing (ICISIP),
Bangalore, India, December 2006.

[2] D. Estrin, R. Govindan, J. Heidemann and S. Kumar. Next Century
Challenges: Scalable Coordination in Sensor Networks,In Proceedings
of the Fifth Annual International Conference on Mobile Computing and
Networks (MobiCOM ’99), August 1999, Seattle, Washington.

[3] C. Intanagonwiwat, R. Govindan, D. Estrin. Directed Diffusion: A
Scalable and robust Communication Paradigm for Sensor Networks,Proc.
6th Annual International Conference on Mobile Computing and Networks
(MobiCom), Boston, MA, 2000.

[4] C. Intanagonwiwat, R. Govindan and D. Estrin. Directed Diffusion for
Wireless Sensor Networking,IEEE/ACM Transactions on Networking,
11(1): 2-16, Feb 2003.

[5] F. Silva, J. Heidemann, R. Govindan, and D. Estrin. Directed Diffusion,
Technical Report ISI-TR-2004-586, USC/Information Sciences Institute,
January, 2004.

[6] D. Niculescu, Communication Paradigms for Sensor Networks, IEEE
Communications Magazine, March 2005

[7] B. Bloom. Space/Time Tradeoffs in Hash Coding with Allowable Errors,
CACM, 13(7):422-426, July 1970.

[8] P. Hebden and A.R. Pearce. Bloom filters for data aggregation and discov-
ery: a hierarchical clustering approach,Second International Conference
on Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), Melbourne, Australia, December 2005.

[9] A. Broder and M. Mitzenmacher, Network Applications of Bloom Filters:
A Survey, Internet Mathematics, 1(4):485-509, 2004

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary Cache: a scalable
wide-area Web cache sharing protocol,IEEE/AACM Transactions on
Networking, 8(3):281-293, 2000.

[11] J. Zhao and R. Govindan. Understanding Packet DeliveryPerformance
in Dense Wireless Sensor Networks,ACM Conference on Embedded
Networked Sensor Systems (SenSys), November, 2003.

[12] A. Woo, T. Tong, and D. Culler. Taming the Underlying Challenges of
Reliable Multihop Routing in Sensor Networks,ACM Conference on
Embedded Networked Sensor Systems (SenSys), November 2003.

[13] G. J. Pottie and W. J. Kaiser. Wireless Integrated Network Sensors,
Communications of the ACM, vol. 43(5), May 2000, pp. 51-58.

[14] B. Krishnamachari, D. Estrin, S. Wicker. Modelling Data-Centric Routing
in Wireless Sensor Networks.IEEE Infocom, 2002.

[15] F. Ye, H. Luo, S. Lu, and L. Zhang. Dissemination Protocols For Large
Sensor Networks,Wireless Sensor Networks, Raghavendra, Sivalingam,
and Znati, Editors. Kluwer Academic Publishers, 2004.

[16] J. Heidemann, F. Silva and D. Estrin. Matching Data Dissemination
Algorithms to Application Requirements, InProceedings of the ACM
SenSys Conference, Los Angeles, CA, 2003.

[17] C. Schurgers and M. B. Srivastava, Energy efficient routing in wireless
sensor networks,Military Communications Conference, 2001.

[18] F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient Broadcast:A robust data
delivery protocol for large scale sensor networks,ACM Wireless Networks
(WINET), vol. 11, no. 2, March 2005.

[19] Jai-Jin Lim and K.G. Shin. Gradient-Ascending Routingvia Footprints in
Wireless Sensor Networks,26th IEEE International Real-Time Systems
Symposium (RTSS), 5-8 December 2005.

[20] J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based proto-
cols for disseminating information in wireless sensor networks, Wireless
Networks, Volume 8 Issue 2/3, March 2002

[21] D. Braginsky and D. Estrin, Rumor Routing Algorithm ForSensor
Networks, Workshop on Sensor Networks and Applications (WSNA),
Atlanta, Georgia, 2002.

[22] Meng-Jang Lin, K. Marzullo, and S. Masini. Gossip Versus Determin-
istically Constrained Flooding on Small Networks.14th International
Conference on Distributed Computing (DISC), Oct. 2000.

