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Abstract of clusters where each sensor may only transmit data to its

. . . .. cluster head. Cluster heads process member data and/otsrepo
This paper presents a paradigm for reducing communlcatlc%pom other cluster heads, make routing decisions, and fawa

C(.)Sts.’ in wireless sensor networks_. The first component 'S QRS result to another cluster head or the sink. While DAC-self
Distributed Asynchronous Clustering protocol (DAC), Whlcorganises the network into hierarchical clusters to supier

self-organises the network into an infrastructure that sonts L .
in-network processing, routing, and deployment. The &écoﬁetwork processing, its well separated cluster heads e

component, and the focus of this paper, is a data-centritimgu mfra}structure. for .|ntell|gent routing. ,

protocol where cluster heads build and maintain sets of Bioo Directed diffusion [2], [3], [4], [5] is a well know data-

filters to inform routing decsions and filter out unproduetiv C&Ntric routing protocol that has been recognised as tite rig
messages. While other data-centric protocols use a flalogyo solution [6]. However, it does not take into account wirsles

and rely to some extent on flooding, our protocol exploiff'K quality, and it does not scale well in networks whereréne
a two tier hierarchy to provide an adaptable, scalable, an@'® Many sinks transmitting many different queries. Esagnt

intelligent routing service that is expected to reduce theher ©2ch node’s routing table grows too large and a more space
of transmissions and extend network lifetime. efficient data structure is needed.
Flooding the network with a message increases the probabil-
1. INTRODUCTION ity that all reachable nodes will receive it. However, anaide

L le wirel ks (WSN ¢ energy efficient protocol would only transmit a message when
arge scale wireless sensor networks ( S) 0 aumnomojécessary. If cluster heads are enabled with an adaptive and

resource constrqmed nodes may be required to operate Qhlable routing capability, then large systems can mowayaw
long periods of time without maintenance. In such networkﬁ,Dm flooding and toward optimal messaging. In this paper

!nformau?)n of dlnterest s?fpgld be delivered tod_the appiiat qigyrin ted data structures based on Bloom filters [7] aexlus
In a timely and energy efficient manner according to protec y cluster heads to make better routing decisions [8].

that minimise wasteful radio transmissions. . . ! . .
Section 2 introduces Bloom filters, and Section 3 discusses

In general, different applications may require differeotre . . . . :
munication protocols or strategies to maximise networi%:-lifWS'\IS and some Qe5|gn gon5|derat|ops. Secthn 4 pr_owdes
me background information on routing, and in Section 5

time. Here we consider a data gathering application and Tt : :
data-drivennetwork of wireless segnsors. I% apgata—driven nefre present our Blo_om Gradient Routing (BGR) protocol. And
work, a query instructs each node to sense its environmen 'Q?"y' our conclusions.
a certain rate, for a period of time, and transmit matching da
back to the sink. Network traffic is composed of packets that
flow periodically between many sensors and one or more sinks.
While sensor data of interest must be guided to sinks, gaierie
should be disseminated to appropriate nodes without imzurr Bloom filters were introduced in 1970 when computer memory
undue communication costs. This becomes more difficult @hexas extremely scarce [7]. Early applications include hyphe
there are numerous sinks injecting a variety of queriesti®o ation, spelling dictionaries, and joining tables in datdsa
network, and only a small fraction of sensors generate diataWith the advent of the Internet, their usefulness was redisc
interest for each query. ered. Essentially, if an application can tolerate a low maite

To reduce communication costs in large data gatherif@gse positives and memory is scarce, then Bloom filters may
sensor networks, we propose a combination of techniques frprovide a practical optimisation technique [9]. Since th& NV
clustering,data-centricrouting, and Bloom filters. We use thedomain is far more resource constrained than the Internet, w
Distributed Asynchronous Clustering (DAC) protocol [1] tcexpect to see many new applications of Bloom filters. Next we
generate a near optimal number of well separated clustelshegrovide some details on this data structure and an exemplary
As is generally the case, sensor nodes are partitioned is¢d alnternet application.

2. BLOOM FILTERS



A. The Data Structure Notable properties of Bloom filters include: no false nega-
tives, false positive rate is tunable, space requiremeas dot
pend on element size, bitwise operations on Bloom filters

re extremely efficient, and they may be implemented with
element that does not belong to the set. The space efficie re than one bit per cell to support counting Bloqm filters.
benefit is gained at the cost of a loss of information and a lo n_seq_uently, they have been found to be useful in network
rate of false positives. applications [9].

The original Bloom filter used a simple bit vector, i.e. one bB. An Exemplary Internet Application

per cell. To construct a filter, the following procedure i®ds Summary Cache: A Scalable Wide-Area Web Cache Sharing
Suppose: elements in sef' from a large universé/, and we  pyo400is one of the most cited papers on using Bloom filters
havem bits of memory available. The hash area may be defin the Internet context [10]. In 1998, when the authors first

asm individual bits with indices) throughm — 1. Generaté:  , oqanted their protocol, web cache sharing was not widely
different indices withk different hash functions applied to eac mplemented due to the overhead of existing protocols
element, and set those bitsttoFigure 1 shows a filter after one Popular web sites may be served by a group of cooperating
element has been stored. To test an unknown element for 3gf, servers, known as proxy servers, where each server hosts

membership, follow the same procedure except just COMPATg et of the site’s pages. Each server hashes its director
each of thosé: bits to 1. If all are equal tal, then the element to a counting Bloom filter and sends a copy to the group

is recognised and probably is a member, else it definitelypis NWhen a server receives a query, it tests its set of filters

a member. for a hit to determine which server in the group probably
hosts the requested page. When a host deletes a page, it
O O 1 O O 1 O 1 O 0 O decrements cell values in its filter. Each directory entrswa
represented with just bits; this reduced storage requirements
1 T 1 and communication overhead [10].

Cluster heads may play a role similar to web proxy servers
in WSNs. As we will explain in Section 4, they could maintain
sets of Bloom filters that represent messages received fatan d
sources and data sinks, and use that information to decideswh

Fig. 1: Storing elements in a Bloom filter: Up to k bits will be set tol by to forward a query or sensor data.
k hash functions and one element.

A Bloom filter is a space efficient, randomised data strucfore
representing a set and supporting set membership queties
It is a filter in the sense that it can be usedfilter out an

hash;(element) ——

3. NETWORKING WIRELESS SENSORS

A false positive occurs when we test a new element ama this paper we have assumed a WSN of small, power
it hashes tok bits that have already been setltdoy one or constrained sensor nodes. The most essential functiorsof it
more elements irb. For example, given a filter whei#®% of network layer is to route data from source to destination.
the bits have been set foand one hash function, the expectetiowever, a protocol that simply minimises the number hops
false positive rate would b&5. However, if two hash functions is not well suited to WSNs. The packet reception rate (PRR),
are being used, the probably that an unseen element will tepportunity for in-network processing, and distance ohdak
positive is0.25. should be considered.

Usually we want to minimise the rate of false positives PRR: Wireless communication is notoriously unpredictable.
while using a limited amount of memory. Given elements The quality of each link depends on the environment, frequen
andm bits of memory, what is the optimal numbkrof hash spectrum, modulation schemes, and the hardware itselk Lin
functions? An optimal turns on 50% of the bits when thequality can vary suddenly with time and small spatial displa
filter is built [9]. ments. Zhao and Govindan systematically evaluate packet in

delivery in [11]. Connectivity analysis, neighborhood raga-
E="1n2 (1) ment, and routing is explored in [12].
n In-network processing: Hierarchical clustering creates op-

The error rate depends om,k and n. Let p equal the portunities for in-ngtwork processing..For example, iaeltf
probability of a bit being zero after the filter has been builfousands of sensing nodes congesting the network with data

Let f equal the probability of a false positive when the filtefransmissions, cluster heads aggregate data by doing smme c
is being tested. putation (max, min, mean, median, summation, etc.), thereb

reducing the quantity of data transmitted.
1 kn Distance: The energy required for radio communication
p= <1 — —> (2) rises dramatically with distance. In general, the outpuigro
m required to transmit over distandds proportional tad™ where
n >= 2 and depends on distance and the environment [13]. In
f=Q —p)k (3) such a network, techniques for minimising power consunmptio



are essential for prolonging network lifetime, and sincdioa Source 1 Source 7 Source 1 Source 7
communication is by far the most power intensive task, we

designed our clustering and routing protocols to reduce thi

cost. l \‘ l

Naturally, well separated cluster heads play an importaet r

in reducing energy consumption and network latency [1]. BGR

uses cluster heads and sets of Bloom filters to increase tepec

network liftetime.

4. DATA-CENTRIC ROUTING
WSN messages must be routed between sink(s) and date / /
sources via resource constrained nodes such that QoS an @ @
lifetime guarantees are met. Here we assume that the network Sink Sink
has used the DAC protocol [1] to self-organise into a set of

clusters with well separated cluster heads that supporfidhe a) AC Routing b) DC Routing

of information between the sink(s) and many sensors. In a

typical data gathenng_ application, the sink Sends_ a quethe Fig. 2: The network on the left imddress-centriceach packet is routed by
network and data of interest flows back to the sink. To redugf shortest path to the sink. The network on the righddga-centricin the
unnecessary transmissions, each cluster head needsgrougnse that packets are routed to facilitate data aggregatio

information to forward queries in the direction of relevandes

and sensor data in the direction of the interested sink.

In Section 5 we will present a scalable, adaptive, and energyl) Directed Diffusion: This [2], [3], [4], [5] is an important
efficient protocol called Bloom Gradient Routing (BGR). hidata-centric routing protocol for flat sensor network tagits.
protocol uses Bloom filters to store information about quaergt It provides mechanisms for routing queries and sensor data.
sensor messages received from proximate nodes and infdrach sensor uses an attribute-based naming scheme thag name
routing decisions. Before presenting BGR in more detalhe data it generates according to one or more attributes.
Sections 4-A and 4-B provide some background on routidgitially the sink has no prior knowledge of which nodes
and related work. probably have data of interest. So, it floods the network with

A. Routing Protocols the query, i.e. the query is propagated throughout the m&two
by adjacent nodes.

Routing protocols may be classified asdress-centrior data- The interaction of disseminated queries and matching senso

centric Address-centnp IS betpe ' §U|ted to networks W.'th Bata establislgradientsfor data to flow toward the sink that
small number of possible destinations because small éixpli

) e ) _gxpressed that interest. For example, a sink may flood the
routing tables may be maintained at each node. Data-cesitric, ... ork with an interest in the form:

better suited to networks with a very large number of possibl type : temperature, op - GT, value | 2

destinations and where the application is typically ined in - gopqqrq yith matchir;g data denerate attribute-value dptas
gathering data or information from the network but not frorn1 the form:

individually addressable nodes, i.e. explicit routinglésbare type : terﬁperature id 19 value - 21

not required. The data is routed along reverse paths to the query’s source.

In address-centric routing, pgckets are routed from o \ter the sink receives this data, it reinforces some paihbée
addressable node to another via the shortest path accor

. . oo U3t sources. Based on the strength of the gradient, indtkauee
to some metric. Data-centric routing is more complex. Qageri

. ) nodes forward sensor data and queries for data along efficien
in the form of named datashould be routed from the sink to q 9

. . paths. This particular version of Directed Diffusion is kno
sensor nodes that are likely to have data of interest. Sevoster two-phase pull [16].

data should be routed to the sink along paths that facilitate . .
data aggregation. Reverse multicast trees provide pa h 2) Gradient Based Rou_tmgA number of other researchers
- . : ave also found the gradient concept useful [17], [18], [19]
naturally facilitate data aggregation. Figure 2 shows amgde ) .
A Messages flow through a multi-hop network according to the
where the number of transmissions has been reduced from

to 4. However, optimal data aggregation requires the faonat gradient stored in each node. In some implementationsiegrad

of a minimum Steiner tree on the network graph and is NP> based on the “height’ of a node, which is proportional fo it

complete [14], and while approximation algorithms do eXisglstance from the sink [17]. In that case, data flows downhill

oo - oward a sink, and queries flow uphill toward sensor nodes.
we assume that data aggregation is done opportunistically. However regardlessqof implement:tion gradient indizate

B. Related Work rection, i.e. the next node on a multi-hop path.

Reverse path forwarding is a general approach to data disGradient Broadcast (GRAB) addresses the problem of robust
semination [15]. Essentially, sensor data flows in the merdata forwarding to the sink via unreliable sensor nodes over
direction of query propagation to reach the sink. error-prone wireless channels [18]. Their sink maintairt®st



field, and each node maintains an indicator of the cost dfscuss using port filters for routing between sinks andtetus
forwarding a packet from itself to the sink. Data flows towartieads in more detail.

lower cost nodes, so the cost field implies a gradient becausgach sink transmits a message to establish the shortest path
direction is implicit. However, the cost value at each n@®eat om each cluster head to each sink. We assume that there
the same as the gradient (vector) defined in Directed Défusi are g relatively small number of sinks, and storing next hop
For robust delivery, GRAB uses a mesh of multiple paths frofhth data for each sink does not require a significant amount
source to sink. The source assigngradit to each report it of memory. However, a simple hop count metric does not
transmits to control the degree of path redundancy, i.eeMGfecessarily define the best way to route data back to the sink,
credit translates into a wider mesh of multiple paths. i.e. a small number of long hops may be less reliable. A better
Gradient-Ascending Stateless Protocol (GRASP) was Pigtric might consider several properties of each link sugh a

sented in [19]. In GRASP, a forwarding history is stored gicjigean distance, energy levels of transmitter and vecei
each node on the path from source to sink - each historyggq packet reception rate.

represented by a Bloom filter. When a source node transmits
packet, the packetsrigin addressis hashed to a Bloom filter
at each node along the multi-hop path to the sink. GRA

W rimarily motiv he theory that membership- o ,
as primarily motivated by the theory that membership-tias ight ports. Each port maintains two Bloom filters: one for

broadcast is more energy efficient than flood-based dissaemir - eived auery messages and one for received data mMessages
tion. However, because GRASP defines a protocol for routi[]% query 9 ges.

queries from a sink to specific, addressable sensor nOdeS’hvgggsreggiiegliev:gactcSrisuIz ?:Sn;Zﬁg’i‘l;rqmuae(\j,{/?](;in:hgusmr
see it as araddress-centrigprotocol. This is in contrast with :

many research efforts which emphasise dlaga-centricnature payl’oad of eagh received message 1S hasheﬂ d:ellg in the
of WSNs port’s Bloom filter. In a one bit per cell filter, this creates
' a representation of what messages have been received from
5. BLOOM GRADIENT ROUTING a specific neighbor. After messages have been received by a

The design of BGR reflects the costs and benefits of floodif§de and stored in its filters, the node can evaluate itsitter

for message dissemination. Flooding the network guarant&&cide which neighbor(s) to forward a query or data message
delivery, but at the cost of implosion, overlap, and reseurd?- AS shown in Figure 4, query messages (solid arrows)wollo
blindness [20]. An interesting paper by Braginsky and Bstri"aiching data residues, and data messages (dashed arrows)
presentsRumor Routingwhich is proposed as a compromiséouow matching query residues. However, each cluster head

between flooding queries and flooding sensor data [Gbk- peeds irjformation abgut the pr'obability that a destinatbn
sip Routingalso provides a scheme that reduces ﬂoodinglnterest is reachable via one neighbor versus another - @sich

nodes flood by sending the message to random neighbors Hfficated by a received message count.
redundant connectivity allows most nodes receive it [28]. |
contrast, BGR implicitly learns from application, netwpdnd

Ef:igure 4 shows four cluster heads and their gradients im-
emented with Bloom filters. Here we assume that each
8Iuster head has eight adjacent cluster heads (“neighbans’

device characteristics. This information is stored andesthan data I fﬁ'f Idata

the form of Bloom filters and aggregates. The sink is able to | £ y

decide, with some degree of confidence, whether or not it is ‘ / {

worth sending a query into the network. If so, the query only ;’F

needs to be sent to the cluster heads - a small percent of.nodes H“m\ J |_| I |_| i I_|: o
. . R ! ...—-"‘""f

A. Bloom Filter Gradients . ‘/ ,.f"'f

The combination of hierarchical clustering aBlbom filter gra- (_-TH Ta i

dientsprovides a simple technique for reducing transmissions :I I:I |§ I:I I o -

where queries are disseminated to unkown data sources in the ,-r” . dat

network rather than to nodes with specific IDs. Figure 3 shows _‘,,a--*”r ‘;‘ R T, ata

one cluster head with eight pairs pbrt Bloom filters(small " ff kY x‘“xh

rectangles), one pair for each port, andlaster Bloom filter :I_I / H H \ |_| r h

at the center of cluster hea@H. The cluster Bloom filter P E

represents data messages from cluster member sensor nodes query / \

When a cluster head receives a query, it uses its clustemBloo ff 3,

filter to decide whether or not to query its own members. /‘ Y

The port Bloom filters represent received data from specific

neighbors, and are used to decide whether or not to forward _ _ _

the query to each neighboring cluster head. In Figure 3, t@a'éc'hg’;lucs't“esrtf]re2;i%igﬂsg:eixt;iﬂgf‘ﬁﬁge&r?tgfSpc‘;"t'];f‘é)ead‘ port for
small white rectangles indicate empty, the light gray iatkc ' '

received data, and the black indicate received queriest Wex



B. Counting Bloom Filters performance of links, which may be asymmetrical, and discar

Counting Bloom filters are a space efficient representation ks to poorly performing neighbors. It has been estimated

the number of times an element has been stored. In BARat, depending on the load, anywhere between 50% and

messages are hashed to a Bloom filter such that each tim@0¢ Of communication energy is wasted on repairing lost

certain attribute-value pair, @lementis receivedk cells in the transmissions [11].

filter are incremented. After the received message is pseces 1he counting Bloom filters maintained by the cluster heads

the node may forward the message to its neighbor(s). ByitpstRIS0 serve as a topology control mechanism which favorsetigh

the element against the Bloom filters for each neighbor, t§&ality links over lower quality links. Successful transsions

node can determine which neighbor(s) to forward to. increment counters at the receiver and, in effect, “pull’sme
BGR routing decisions may depend on several parametei@ges along the more reliable paths.

but here we assume a simple case where each received message

is forwarded to the highest scoring neighbor(s). When a node data | cete
is ready to forward a message, it tests the filters for itsrothe A o
neighbors. If none test positive, it forwards the messagallto LU L i )
other neighbors. If one tests positive, it forwards the ages CHabg m 00 m L CHyp
to that neighbor. However, if more than one tests positive, i
must choose the best neighbor(s) for the message acconling t T - a0 1n 0f
a scoring function. For a given message, the highest scoring | |
filter will be the one with the largest minimum count. ' '
: :

score(filter) = min(h;=1.x : filter[h;(element)]) (4) m '|U M M |'u I

. In other words, for hash functions,....,  filter is sc_oregl CH. i i PO i o o
y hashing the message of interest iocells in the filter; -

the minimum count is the score for that filter. A higher score L 00 0l 0o

indicates a stronger gradient from that neighbor, so thé&giac y’
is forwarded out the port(s) represented by the highesirggor
filter(s).
. Fig. 4: Four Cluster Heads and their Filters: messages leave a residue as
C. Adaptation they are routed via cluster heads.
As discussed above, a cell's count is incremented each time a
glemen; hashes to its location in the Bloom filter. If we assum: Self-Organisation and Data Discovery
just 4 bits per cell, then a cell becomes saturated after tk5 hi

This leads us to two closely related problems. First, whenBR reduces unproductive communication by disseminaiting
cell becomes saturated it is not able to record the sucdesdfiormation proactively. During cluster formation eactnser
reception of new packets. Network conditions may changb sUkansmits its measurements to its cluster head. Each cluste
that good links go bad. In other words, the network will lose j head stores member data in its cluster Bloom filter and sends a

ability to adapt to recent events. Second, the cell countg mgPPY 1o the sink(s). These filters are copied to cluster hesd p
reflect stale information. Bloom filters en route up t& hops aways from their origin,
BGR adapts to change by applying a decay function ¥§€reh is a tunable parameter. The subsequent transmission
some filter cells each time a new packet is received. TREAueries and data, and the residues they leave in port Bloom
message is hashed kocells. For each cell, the decay functiorfllters, build multi-hop paths between cluster heads and the
will decrement a cell’s function according to a probabilitpinK(S). As a result, a hierarchy of Bloom filters is built tha
distribution. The probability of decay depends on the cell’s filtérs out unproductive query and data transmissions. &t th
count and maximum valugi = count/maz. top level, the sink can evaluate its set of cluster Bloomrsite
Next each cell's value is incremented to record the currel@ decide whether to query the network or not. Each cluster
message. This procedure guarantees that counts stay withff@d can examine its port Bloom filters to help decide where
range and facilitates adaptation without explicitly calesing 0 forward a query. It can also evaluate its own cluster Bloom
the passage of time. The decay function could also be appéiedilter to decide whether or not to query its members.
a function of count and time, where decay rate is an apptinati Next we describe part of this filtering process in more

specific parameter. detail. As i'n Section 5-A, each cluster head maiptains a set
) ) of Bloom filters. One represents data reported directly from
D. Link Quality cluster members directly, and the others represent quesgtar

Link quality, as measured by message delivery performanseurces likely to be found via each neighbor. However, atte
may be seen as the most basic aspect of wireless commtassuming just two Bloom filters for each port as we did
nication. Ideally, a simple mechanism would measure actualSection 5, here we assume two arrays of Bloom filters for



each port. This compound data structure can be use to represelaptive, reliable, and more energy efficient than othea-dat
not only what has been received from each neighbor, but alsentric protocols that rely on flooding or random forwarding
from how far away. The first filter in each array representadat

received from cluster heads one hop away, the second from two
hops, and so on. [1] P. Hebden and A.R. Pearce. Distributed Asynchronousst€ling for

Self-Organisation of Wireless Sensor Network®urth International
Suppose we want data from sensor nodes that measure Conference on Intelligent Sensing and Information ProogséCISIP),

moisture M, temperature T, and salinity S. Such a tuple’s Bangalore, India, December 2006.
format could be represented by a set of strinbs= 40,7 = [2] D. Estrin, R. Govindan, J. Heidemann and S. Kumar. NexhtQegy

- g - . Challenges: Scalable Coordination in Sensor NetwolksProceedings
20,S = 10. Suppose the application is interested in data o Fim Annual International Conference on Mobile Cartipg and

from sensor nodes where moisture levals range from40 Networks (MobiCOM '99)August 1999, Seattle, Washington.
to 49, temperatured’ from 20 to 29, and salinityS from 10 [3] C. Intanagonwiwat, R. Govindan, D. Estrin. Directed fDé#fion: A

. Scalable and robust Communication Paradigm for SensordkesaProc.
to 19. First the query must be routed to cluster heads that, 6th Annual International Conference on Mobile Computing &tetworks

according to the port Bloom filters, probably have such data. (Mobicom) Boston, MA, 2000.

Here we assume that measurements were binned into decilésC. Intanagonwiwat, R. Govindan and D. Estrin. Directedfulsion for
before hashing. We can test the elements of our query for set ﬁ{i;eszsléer,lse%r Z%Et;‘_'ork'”gEEE/ACM Transactions on Networking
membership by hashing each element’s string representatigs) F. Silva, J. Heidemann, R. Govindan, and D. Estrin. DigecDiffusion,
hash(M — 40) A hash(T — 20) A hash(S — 10) to the Technical Report ISI-TR-2004-586, USC/Information Smsninstitute

. January, 2004.
cluster Boom filter. The order that elements are hashed do%'j: D. Niculescu, Communication Paradigms for Sensor NetaolEEE

not matter. The query tests negative as soon as an element communications MagazindMarch 2005 o
hashes to a zero in the Bloom filter. If the query tests pasitiv [7] B. Bloom. Space/Time Tradeoffs in Hash Coding with Allgle Errors,
then such data is probably in the cluster head’s subtre@n@iec CACM 13(7):422-426, July 1970. . .

. y [8] P.Hebden and A.R. Pearce. Bloom filters for data aggimyaind discov-
the cluster Bloom filters at each cluster head must be tested f ~ ery: a hierarchical clustering approa®econd International Conference
set membership. If the query test positive, then one or more on Intelligent Sensors, Sensor Networks and Informationc&ssing

- (ISSNIP) Melbourne, Australia, December 2005.
cluster membe_rs probably have data of interest. . . [9] A.Broder and M. Mitzenmacher, Network Applications ofoBm Filters:
Although this paper has focussed on data-centric routing, A Survey, Internet Mathematics1(4):485-509, 2004
other elements such as sensor IDs could also be stored imBId&0] L. Fan, P. Cao, J. Aimeida, and A. Z. Broder. Summary @aehscalable

filters and used for routing or other functions where testarg V&'gj&g{;ﬁg\’gﬁ%:ggf;ggshgggg_ PrOtocEEE/AACM Transactions. on
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