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Abstract

Methods from comparative genomics, sequence
analysis, and virtual screening were combined to
predict new drug targets and the chemical com-
pounds that bind most strongly to those targets.

Motivation: The evolution and spread of an-
tibiotic resistant pathogenic bacteria has been
rapid and often lethal, while the pipeline for new
antibiotics has remained virtually bone dry. We
face an urgent need for new antibiotics and more
cost effective methods to support drug discovery;
greater efficiency may be achieved by prioritizing
in vitro testing.

Results We found that this combination of
methods provided a cost effective way to predict
suitable drug targets, their active sites, and prior-
itize chemical compounds for the in vitro testing
of their antimicrobial properties, especially in the
light of domain expertise.

Availability Software and data are available
upon request.

Contact phebden@gmail.com

Supplementary Information Supplementary
tables and figures are available with the online ver-
sion.

1 Introduction

In this thesis we report on our application of
methods from comparative genomics and virtual
screening to discover new bacterial drug targets
and chemical compounds that bind to those tar-
gets. We hypothesized that given the growing
abundance of genomic sequence data and comput-
ing power, the combination of sequence analysis
and virtual screening provide an efficient way to
identify probable active sites on essential proteins
and the chemical compounds that bind to them
with the greatest affinity. Our hope is that this
research will contribute the antibiotic drug discov-
ery process and that new antibiotics will be devel-
oped and, eventually, be used to promote health
and save lives.

The specific objectives of this research include
the following:

e Acquire the complete proteomes of Bacillus
subtilis and 10 to 100 diverse bacterial pro-
teomes.

o Identify the cell wall associated proteins in
Bacillus subtilis that are the most broadly
conserved across bacterial species, both
Gram-positive and Gram-negative, and use
sequence analysis to determine probable ac-
tive sites.

e Determine target proteins: broadly conserved
proteins have a known 3D structure.

e Virtually screen chemical compounds against
probable active sites on target proteins.

e Identify the “best” compounds for in wvitro
testing against pathogenic bacteria.

e Develop software and techniques, especially
those that use high throughput distributed
computing, that scale to very large data sets.

The treatment of infectious disease with antibi-
otics has been one of the major successes of the
20th century and has led to large increases in life
expectancy. However, microorganisms are becom-
ing increasingly resistant to multiple classes of an-
tibiotics and there is an urgent need for new com-
pounds [43]. For example, Staphylococcus aureus
(S. aureus) is the leading cause of bacterial in-
fections of the skin, soft tissue, bloodstream, and
lower respiratory tract in developed countries [11].
Although penicillin was effective initially, resistant
strains emerged in the mid-1940s, methicillin re-
sistant S. aureus (MRSA) was discovered in the
1960s [11], and strains with some degree of van-
comycin resistance have recently emerged world-
wide [24]. The implication is clear. If one of the
greatest successes of the 20th century is lost, we
face the possibility of a commensurate decrease in
life expectancy.

In an effort to meet this challenge, the first ma-
jor part of our research applies sequence analysis



to recently determined genomic data. The avail-
ability of bacterial genome sequences was expected
have a large impact on antibiotic discovery by en-
abling new genomics-based approaches for iden-
tifying new molecular targets [32] but, it should
be emphasized, genomics does not significantly al-
ter the time frame for the drug discovery process,
which can take up to 12 years [41]. In practice, ge-
nomics has delivered novel essential drug targets
for target based discovery efforts [41; 42].

The second major part of our research uses the
power of distributed computing for virtual screen-
ing of compounds. This application of virtual
screening was motivated by several considerations.
First, computational methods have advanced to
become a crucial component of many drug dis-
covery programs, and virtual screening techniques
are now widely used [31]. Second, the size of
compound libraries has been growing exponen-
tially from the output of robotic “combinatorial
chemistry” [23]. Third, the number of known 3D
structures continues to grow, with thousands be-
ing added each year [70]. Fourth, small organic
ligands are integral parts of many protein struc-
tures [37, p. 2] and, more importantly, they usu-
ally participate directly in the function of a protein
and, consequently, may be one of the most inter-
esting components of a structure to study [37, p.
103]. And finally, we noted that virtual screening
to discover new inhibitors is becoming a common
practice in modern drug discovery [61].

Although pathogenic bacteria have proven to
be remarkably adaptable, the cell wall remains
a good target for antibiotics [62; 63; 60] and
more than 100 genes involved in bacterial cell
wall biosynthesis and division have been identified.
Starting with these genes, we used a comparative
genomics approach [3] to identify a set of homolo-
gous genes/proteins in multiple bacterial species.

We used BLAST [1] for pairwise sequence align-
ment and MUSCLE [13] for multiple sequence
alignment (MSA), Jalview [71] for visualization of
the MSA and calculation of conservation scores for
each amino acid in the B. subtilis query protein,
and PyMOL [10] for 3D molecular visualization.

We downloaded ligand files representing =
100,000 compounds from the ZINC database [26];
almost 90,000 were from the Natural Products
Database (NPD) meta data set. Given a promis-
ing set of candidate proteins, probable active sites,
and ligands we used AutoDockTools (ADT) [59]
to prepare receptor and ligand input files and
AutoDock Vina [69] molecular docking software

for virtual screening to identify small molecule in-
hibitors [43].

We found that amino acids with high conserva-
tion scores corresponded well with known active
sites, i.e., organic ligand binding sites according to
the Protein Data Bank (PDB). We also found that
by the application of molecular evolutionary prin-
ciples, sequence analysis and virtual screening, we
were able to prioritize bacterial species, their pro-
teins and matching compounds for wet lab exper-
iments. In summary, we considered 123 B. sub-
tilis proteins and ~ 100,000 chemical compounds.
Four proteins, FtsZ, CoaD, YwtF, and RacE were
identified as candidates for virtual screening; FtsZ
and YwtF and a small number of specific com-
pounds were selected for testing which, based on
empirical evidence, had the highest probability of
exhibiting antimicrobial properties.

This thesis is organized as follows. Section 2
provides background information on bacteria, an-
tibiotics, and the motivations underlying our re-
search. Section 3 provides a conceptual introduc-
tion to the methods used in our research and why
they were chosen. Section 4 describes how our
methods were applied. Section 5 presents our re-
sults and interpretations. Section 6 provides a
brief discussion of our findings. In addition, the
Supplementary Material in the Appendix provides
many detailed tables and figures.

2 Bacteria and Antibiotics

2.1 Background

The ’golden era’ of antibiotic research occurred
from the late 1940s to the late 1960s [41]. In
fact, nearly all classes of antibiotics (acting on the
same target) currently in use were developed prior
to 1970 [32]. Since the 1980s, there has been a
decline in the number of new antibiotics brought
into clinical practice, and even these new antibi-
otics bind to the same target molecules as their
predecessors. And now, as pan-resistant strains of
pathogenic bacteria have become a clinical reality,
the pipeline of new drugs is “virtually bone dry”
[55].

This has been due to a number of factors in-
cluding the high expense of developing new drugs,
the relatively low profit potential of antibiotics, in-
dustry concentration through mergers and acqui-
sition, and higher regulatory hurdles [54; 55; 51].
Consequently, new classes of antibiotics are des-
perately needed to combat the global emergence
of bacterial pathogens — this has been described



as one of the most important challenges facing the
pharmaceutical industry [7].

Rational drug design has been based on de-
tailed structural information of the drug target.
However, the success of this paradigm, which
emerged in the late 1960s, has been limited by
the small number of well defined molecular targets
and progress has been limited to a few chemical
classes, e.g., S-lactamase inhibitors, carbapenems
and fluroquinolones [32]. This limitation and the
lack of new antibiotic classes since 1970 is shown
in Figure 1 where the graph flattens out in the late
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Figure 1: Discovery of new classes of antibiotics:

Empiric screening has generated antibiotic classes,
while targeted approaches (i.e., rational drug de-
sign) have generated antibiotic agents that act by
related mechanisms. Some representative antibi-
otics are shown here. Image: [32].

2.2 Antibiotic Resistance

Pathogens such as Staphylococcus aureus (S. au-
reus), Streptococcus pneumoniae (S. pneumoniae)
and Enterococcus faecalis (E. faecalis) have be-
come increasingly resistant to multiple antibi-
otics [41]. Methicillin-resistant S. aureus (MRSA)
and vancomycin-resistant Enterococci (VRE) in-
fections tend to occur in hospitals whereas multi-
drug-resistant pneumococci are more likely to oc-
cur in the community [2; 52; 28]. If current trends
continue, even vancomycin, a last line of defense
for hospitalized patients, will no longer be effective

[41].
For example, S. aureus USA300 is re-
sistant to methicillin, ampicillin, penicillin,

mupirocin, macrolides, lincosamides, tetracycline,
ciprofloxacin and streptogramin. Antibiotic resis-
tance genes are present on strain USA300’s chro-

mosome and plasmid, they include mecA on the
chromosome, ermC and ileS on both the chromo-
some and plasmid, and gene blaZ on the plasmid
[12]. S. aureus USAS300 sensitive to vancomycin
[12]. Vancomycin resistant S. aureus (VRSA) is a
rare strain of S. aureus that was identified in 2002
[72]; it has become resistant to the glycopeptide
antibiotic vancomycin [11].

The main mechanisms by which microorgan-
isms exhibit resistance include drug inactivation
or modification through the production of -
lactamases, alteration of a target site, alteration of
a metabolic pathway, and reduced drug accumula-
tion by decreasing permeability and/or increasing
active efflux of the drugs across the cell surface
[19]. However, the acquisition of drug resistance
is not necessarily the product of a slow evolution-
ary process.

Nonresistant bacteria may rapidly acquire resis-
tance from resistant bacteria by horizontal gene
transfer using one of three mechanisms: transfor-
mation, transduction and conjugation [49]. “Un-
like eukaryotes, which evolve principally through
the modification of existing genetic information,
bacteria have obtained a significant proportion of
their genetic diversity through the acquisition of
sequences from distantly related organisms. Hor-
izontal gene transfer produces extremely dynamic
genomes in which substantial amounts of DNA
are introduced into and deleted from the chromo-
some” [49]. The significance of horizontal gene
transfer for bacterial evolution was recognized
when multidrug resistance patterns emerged on a
worldwide scale [9].

2.3 Broad Spectrum Antimicrobial
Agents

The range of different microbes against which an
antimicrobial agent acts is called call its spectrum
of activity, and agents that are effective against
bacteria from a wide range of taxonomic groups,
including Gram-positive and Gram-negative, are
called broad spectrum. Broad spectrum drugs are
appropriate where a patient is seriously ill with
an infection but the organism is not known [6],
i.e., such a drug will have a higher probability of
success. Consequently, in this thesis, broadly con-
served cell wall related proteins, especially those
conserved in both Gram positive and Gram neg-
ative bacteria, are analyzed for their drug target
potential.



2.4 The Cell Wall and Membrane as
Targets

The cell wall is an essential structure for virtually
all bacteria as it protects the cell from damage and
osmotic lysis; it is the target of our best antibiotics
[36]. In general, antimicrobial drugs act on impor-
tant structures or functions that exist in bacteria
(prokaryotic cells) but not in humans (eukaryotic
cells). For example, Gram-positive bacteria have
high osmotic pressure and would burst without a
sturdy cell wall. Penicillin and cephalosporin con-
tain a 8 lactam ring which attaches to enzymes
that cross-link peptidoglycans. Interference with
the cross-linking of tetrapeptides prevents cell wall
synthesis [6].

Although all cell membranes are similar, those
of bacteria are significantly different from animal
cells. For example, some polypeptide antibiotics
such as polymyxins act as detergents and distort
bacterial cell membranes — they are especially ef-
fective against Gram-negative bacteria which have
an outer membrane rich in phospholipids [6].

3 Comparative Genomics and
Virtual Screening

In this section we provide general background in-
formation on comparative genomics and virtual
screening.

The application of comparative genomics for
target identification is this paper is similar to the
application in [3] where conserved proteins were
identified, determined to be essential and, there-
fore, potential drug targets. We chose compara-
tive genomics to identify antibacterial targets be-
cause, while not a flood [54], an unprecedented
number of novel targets have been discovered via
this approach [50].

Given broadly conserved proteins and their se-
quences, amino acids (and their locations) in those
sequences that are important functionally and for
binding tend to be conserved across species dur-
ing evolution [75, p586]. Given a 3D structure,
an active site is a localized combination of amino
acids (which may be far apart in the amino acid
sequence) that can interact with a chemically spe-
cific substrate and provide the protein with bio-
logical activity; as a result, proteins with very dif-
ferent amino acid sequences may fold into struc-
tures that produce the same active site [46, p415].
Consequently, in silico screening of chemical com-
pound libraries forms the second major part of our

approach. Once an active site or probable bind-
ing site has been identified, the binding of small
molecule ligands can be modeled. Molecular mod-
eling is a high throughput way of rapidly investi-
gating the binding potential of large numbers of
small molecule drugs [75, p587].

While the design, analysis and enhancement of
ligands are also important steps in the drug dis-
covery process [38], they are outside the scope of
this thesis.

3.1 Comparative Genomics

The first insights into genomic drug discovery ap-
proaches were made possible by the comparative
analysis of the complete genome sequences of 10
bacterial pathogens [17]. Broadly conserved genes
conserved tend to be essential, which makes them
attractive targets for new broad-spectrum antibi-
otics [17]. In [3], researchers used Escherichia coli
(E. coli) as a reference organism. They identified
four novel genes (ygjD, ycfB, yihA, yjeQ, and their
respective orthologs). These genes were attractive
targets, i.e., they were novel, essential, broadly
conserved (homologs in a wide range of bacteria
including H. influenza, S. pneumoniae, H. pylori,
and B. burgdorferi), and low toxicity for higher
organisms.

In other research, it was reported that many
cell division proteins are conserved across Gram-
positive and Gram-negative bacteria [40]. Since
essential bacterial genes tend to be more conserved
that nonessential genes over short and long evolu-
tionary time scales [29], the most highly conserved
genes associated with cell wall biosynthesis should
be the best targets for new broad spectrum antibi-
otics.

B. subtilis has approximately 4,100 genes; 192
were shown to be indispensable, 79 were predicted
to be essential — with about 44 of these involved
in the synthesis of cell envelope and the determi-
nation of cell shape and division [33]. As of 2000,
about 150 essential genes were identified in S. au-
reus [27].

3.2 Sequence Analysis
3.2.1 Foundation

The fundamental basis for our approach is the well
established notion that similar sequences tend to
have similar structures and, consequently, similar
functions. Burkhard Rost analyzed more than a
million alignments of pairs of protein sequences to
determine a threshold for sequence identity [57],



i.e., the minimum level of sequence identity re-
quired for an alignment to provide a reliable mea-
sure of homology. He found that 90% of sequence
pairs with at least 30% identity over their whole
length were structurally similar. Below 25% se-
quence identity, only 10% of the aligned pairs were
structurally similar.

As a result, 30% sequence identity is often used
to justify an initial presumption of homology [75].
The region between 30% and 20% has been called
the twilight zone — where homology may exist but
cannot be assumed without additional evidence —
and below 20% lies the midnight zone [75].

3.2.2 Pairwise Sequence Alignment

The Basic Local Alignment Search Tool (BLAST)
[1] may be applied as a first step in sequence anal-
ysis. BLAST uses heuristics to find high scoring
pairs and the computationally expensive Smith-
Waterman algorithm [64] to generate the final
alignment [1]. In general, each query is “blasted”
against a database of proteomes to find similar
proteins in other organisms. This generates one
set of similar sequences for each query protein.

3.2.3 Complexity

Alignment algorithms such as Needleman-Wunsch
[47] and Smith-Waterman [64] are based on dy-
namic programming:
ments have O(n?) time and space complexity;
multiple sequence alignments of k sequences have
O(n¥) time and space complexity and are not fea-
sible for alignments of more than three sequences
[34]. Hence, all available methods are approxima-
tions, i.e., hierarchical clustering of pairwise align-
ments roughly approximates the phylogenetic tree
and guides the multiple alignment [34]. This hi-
erarchical approach to progressive sequence align-
ment, an idea presented in [16], reduces the O(n*)
multiple alignment problem to a series of O(n?)
problems [34].

pairwise sequence align-

3.2.4 Multiple
(MSA)

Sequence Alignment

MSA may be viewed as a extension of pairwise
sequence alignment that may reveal small active
sites in otherwise dissimilar sequences. CLUSTAL
is a multiple sequence alignment algorithm intro-
duced in [68]. It uses heuristics, as do all available
MSA methods [34], to generate an alignment that
is not guaranteed to be optimal for a given scoring
scheme. CLUSTALW [22] is an improved version

CLUSTAL [21] — the W stands for weighted. Al-
though CLUSTALW is still the most widely used
multiple sequence alignment tool, no significant
improvements have been made to the algorithm
since its introduction and several more recently
developed algorithms perform better in terms of
accuracy, speed or both [14].

In a recent review, MUSCLE [13] and T-
COFFEE [48] were listed as the most accurate
programs [14]. On nearly all benchmarks, these
newer programs outperformed CLUSTALW in
terms of average accuracy. Given a typical desktop
PC, the authors recommended MUSCLE for align-
ing over 100 sequences that are approximately
globally alignable [14]. Since we expected to use
a typical desktop PC for MSA of large numbers
of sequences that are at least 30% identical, we
chose MUSCLE generating for generating all mul-
tiple sequence alignment and Jalview [71] for MSA
visualization — an example is shown in Figure 2.

3.3 Virtual Screening

Virtual screening is an in silico structure-based de-
sign strategy where small molecules are “docked”
into the structures of target molecules and scored
for their complementarity to binding sites. This
process models similar events that occur in na-
ture. For example, Figures 3a and 3b show two
proteins, FtsZ and CoaD. An organic ligand (in
green) bound to an active site on the surface of
each protein; the figures also show polar contacts
as defined in the Protein Data Bank (pdb) file for
each protein.

Fortunately, accurate energy calculations and
scores are not necessarily required for meaning-
ful compound selection and, in a typical docking
study, a large compound database may be reduced
to a short list of ~100 preferred candidates [31].
Docking and scoring are important steps in the
filter between a total potential library and test-
ing at the bench [38] and, by some measures, its
major achievement has been to eliminate inactive
compounds from further consideration [5]. Indeed,
such computational approaches have been widely
used for hit identification and lead optimization
[31].

A central problem in drug discovery is the iden-
tification of a compound that will bind tightly
and specifically to a target protein. Tight bind-
ing promotes efficacy at low concentrations, and
specificity helps to minimize side effects [38]. Al-
though it is difficult to estimate absolute affinities,
comparative docking can indicate relative affini-
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Figure 3: Pymol images of FtsZ and CoaD with organic ligand using Protein Data Bank files.

ties. This means that given a scoring function that
can rank ligands in approximate order of affinity,
we can select compounds and set priorities for ex-
perimental testing [38].

However, the probability of finding a novel an-
tibacterial compound with broad spectrum activ-
ity depends on the diversity of biologically rele-
vant compounds available for screening. Chemical
diversity is an extremely important factor when
searching for new drugs [51], and ZINC provides
a large database of millions of commercially avail-
able compounds for virtual screening [26].

Docking in silico of large sets of ligands is com-
putationally expensive and, consequently, high-
throughput computing clusters and algorithms are
widely used for virtual screening [53]. We found
that virtual screening is well suited to distributed
computing. Screening one compound does not de-

pend on the output from screening other com-
pounds. As a result, many compounds can be
screened simultaneously on many CPUs located
anywhere on a network.

4 Methods

In this section we describe the application of our
methods and algorithm parameters.

A list of 123 B. subtilis proteins was provided
by Dr. Nick Allenby of Demuris Ltd., Newcas-
tle Upon Tyne, United Kingdom. We downloaded
these B. subtilis proteins from the UniProt web-
site. Complete protein lists may be found in the
Supplementary Material, Tables 14 and 15. We
used the Database of Essential Genes [74; 73] to
confirm whether or not broadly conserved genes
are essential.



Next we downloaded 60 complete bacterial pro-
teomes in fasta format from the Integr8 sequence
database [30]. The 60 proteomes were selected
for pathogenicity and diversity. They included 25
Gram positive, 25 Gram negative, and 10 pro-
teomes, such as Mycoplasmas, that do not have
a cell wall [18]. Complete proteome lists may be
found in the Supplementary Material, Table 16.

As our first computational task, we compared
each of the 123 B. subtilis proteins with every pro-
tein in each of the 60 proteomes in order to identify
potential drug targets, i.e., we used BLAST [1] for
pairwise sequence alignment to identify broadly
conserved cell wall proteins. Then we used MUS-
CLE [13] for multiple sequence alignment to iden-
tify highly conserved residues in each query se-
quence and mapped conservation scores for those
residues to the query protein’s 3D surface to in-
dicate probable active sites. The workflow for the
these tasks is shown in Figure 4.

We also used BLAST to identify proteins con-
served in the 25 Gram positive and the 25 Gram
negative proteomes; and to gauge the redundancy
of broadly conserved proteins in the B. subtilis
proteome, i.e., we assumed that relatively unique
proteins are more likely to be essential.

After identifying potential targets, we docked
NPD ligands from the online ZINC database with
each potential target protein in silico, i.e., we used
Vina [69] to perform virtual screening to iden-
tify chemical compounds for in vitro testing. The
search space that included the most promising,
highly conserved region of the receptor molecule
— this region either included a known active site
or a predicted active site. And finally, top scor-
ing ligands were selected for in vitro testing. The
workflow for these tasks is shown in Figure 5.

4.1 Pairwise Sequence Alignment

We used the Basic Local Alignment Search Tool
(BLAST) [1] to identify the set of proteins that
have homologs in many species of pathogenic bac-
teria. BLAST uses heuristics in an attempt to
align pairs of sequences such that the resulting
alignment’s similarity score S is maximized and,
consequently, its F-value, which is a a measure of
the reliability of the S score, is minimized [35].

E = kmne

(1)

Equation 1 states that F, the number of align-
ments expected by chance, is a function of several
parameters: (1) the size of the search space m xn;

(2) the normalized score AS, and (3) a minor con-
stant k. In a database search, the size of the search
space is the product of the number of letters in the
query m and the number of letters in the database
n. As equation 1 indicates, a given increase in S
results in an exponential decrease in the expected
number of alignments E with a similarity score at
least as good as S; therefore, the smaller the FE
value, the more significant the alignment [35].

From Equation 1: A lower E value reduces false
positives at the expense of an increase in false neg-
atives. In fact, very short sequence alignments
(i.e., small m) with very high S scores will be fil-
tered out because, all else being equal, a shorter
sequence will result in a higher e-value and, there-
fore, deemed less statistically significant. Con-
sequently, alignments with very short B. subtilis
query proteins were filtered out and not analyzed.

The Expect value (E) is a parameter that de-
scribes the number of hits expected by chance
when searching a database of a particular size.
The lower the E value, or the closer it is to
zero, the more "significant” the match is. How-
ever, virtually identical short alignments have rel-
atively high E values because the calculation of
the E value takes into account the length of the
query sequence. These E values are high be-
cause shorter sequences have a higher probabil-
ity of occurring in the database by chance alone |
http://blast.ncbi.nlm.nih.gov |.

The pseudo code in Table 1 represents our use
of BLAST [1] to identify one or more homologous
proteins for each B. subtilis query protein. In-
put: a query fasta file of 123 protein sequences,
60 subject proteomes, and a set of thresholds T: a
BLAST E value of 0.00001 (a smaller E value will
filter out more alignments than a larger one) and
a minimum percent identity of 30%.

let file = the B_subtilis fasta file
foreach protein P in file
blast P against the proteomes
for each hit > T1
record hit

foreach protein P in file
if P had >= 1 hit in >= T2 proteomes
save set of hit sequences to file

Table 1: Pseudo code for using BLAST to iden-
tify homologous proteins for each B. subtilis query
protein.



download 123 B. subtilis query sequences from Uniprot

download complete bacterial proteomes from EBI

v

format DB using all fasta sequences from proteomes of interest

v

blast query sequences against subject DB

>

filter results using E value

v

sort hits {by number of proteomes)

filter results using % sequence identity

v

do MSA with MUSCLE on most broadly conserved query sequences

v

map MSA conservation scores to B. subtilis protein 3D structure using PyMol to
color this target protein’s surface (red = highest})

v

identify potential active sites by degree of conservation and topology

Figure 4: Workflow 1: pairwise and multiple sequence alignment; mapping conservation scores by

color to surface of B. subtilis 3D structure.

Output: a list of B. subtilis proteins that
are probably homologous to proteins in subject
species ranked in order of the number of subject
species with one or more probable homologs (hits).

Time complexity: blasting 123 B. subtilis pro-
teins against 60 proteomes is relatively fast: ~ 162
seconds, or 2.7 seconds per bacterial proteome.
This step of our research was greatly facilitated
by software that we implemented in the Java pro-
gramming language, shown in Figure 14 of the
Supplementary Material.

Although outside the scope of this thesis, we
note that additional work may be needed for align-
ing subsequences that constitute active sites, i.e.,
multiple protein sequences may lack global simi-
larity but possess critical local similarity.

4.2 Multiple Sequence Alignment

After we determined which sequences were suit-
able, based on E value, sequence identity, and
whether or not the top scoring B. subtilis proteins
had a known 3D structure, we generated multiple
sequence alignments using MUSCLE [13]. Each
MSA included the B. subtilis sequence and, typi-
cally, about 50 very similar sequences from at least
40 of the 60 proteomes in our local database.
The MSAs produced by MUSCLE were visu-
alized with Jalview [71] and conservation scores
were extracted with a Perl script, mapped to each
amino acid in the B. subtilis protein of interest,

saved to a pml file, and visualized with PyMOL
[10].

4.3 Virtual Screening

The virtual screening method applied in this re-
search is a receptor based screen [31] where we
attempted to “dock” members of a chemical li-
brary against a given protein structure in silico
and software predicted the conformation and bind-
ing affinity of NPD ligands.

4.3.1 Chemical Compounds used as Lig-
ands

Natural Products Database (NPD) of commer-
cially available natural products and natural prod-
uct derivatives was downloaded from the ZINC
database [26]. The 2008/5 version of the NPD
contains 89,425 entries for commercially avail-
able compounds from seven vendors that adver-
tise their compounds as being of natural origin,
either pure natural products, or chemical deriva-
tives of natural products. We also downloaded
the "usual” data sets of 11 random micro vendors,
approx 11,000 from the ZINC database. The ven-
dors are listed in Tables 12 and 13 of the Supple-
mentary Material.



split file of ligands with script

I read receptor pdb file with ADT
l define search space on receptor with ADT

I add polar Hydrogens with ADT I

v

convert mol2 files to pdbqt with script

convert pdb file to pdbgt with ADT

create config.txt file for vina,
add parameters and x,y,z coordinates

I docked ligand log files Ib vina __args

v

I parse each log file for top scoring pose I

v
—

I sort ligands by this score

q docked receptor output files |

v

view top dockings with PyMol,
analyze data and prioritize compounds

v

purchase compounds for testing on bacteria in vitro

Figure 5: Workflow 2: virtual screening and ligand selection.

4.3.2 Docking Software

For virtual screening, we considered AutoDock 4
[44; 25] and AutoDock Vina (Vina) [69]. Both
have been found to be are equally capable in rank-
ing smaller molecules with few rotatable bonds,
and both exhibit a size-related bias in scoring [8].
However, AutoDock Vina has an improved local
search algorithm and the ability to detect and uti-
lize multiple CPUs. As a result, Vina executes
more quickly than AutoDock 4 and ranks larger
molecules more accurately, “researchers should
look to it first when undertaking a virtual screen”

[8].

Hence, given a set of target proteins and the
Natural Products Database (NPD) ligands from
the ZINC database [26], we used Vina [69] to
screen these ligands versus our target proteins, i.e.,
we used Vina to predict how well our drug candi-
dates will bind in wvitro to probable active sites
(identified above by sequence analysis) of known
3D structure. Note: to achieve high throughput,
depending on availability, up to 88 receptor-ligand
docking operations were performed in parallel on
a cluster of computers with a total of 88 CPUs
(cisbclust at Newcastle University). This reduced
expected time complexity from months to days,
i.e., from & 30 to 60 seconds to less than 1 second
per docking.

4.3.3 Ligand and Receptor Preparation
for Vina

The “usual” set NPD ligands were downloaded
from ZINC in the mol2 file format (p0.0, p0.1,p0.2,
p0.3, p0.4, p1.0). Each file, which contained thou-
sands of ligands, was split into single ligand files
in mol2 format. Each single ligand file was pre-
pared for docking and converted to pdbqt format
using Perl and the prepare_ligand4.py script from
AutoDockTools [59]. Each protein receptor was
prepared and converted to pdbqt format using the
AutoDockTools graphical user interface [59]: polar
hydrogens were added before conversion to pdbqt
format.

4.3.4 Search Space for Vina

AutoDockTools [59] was also used calculate the
x,y,z coordinates of the search space, Table 2,
to be explored by Vina [69]; spacing was set to
1.000 Angstrom. The probable active sites iden-
tified from our sequence analysis helped to limit
this search space and reduce computation time.
We noted that the quality of the starting coordi-
nates for each receptor, in effect, put a limit on
the accuracy of our docked results [45].



receptor center_x center.y center_z size x size.y size_z
FtsZ -17.047 31.454 24.275 22 22 22
CoaD 126.100 69.632 117.280 20 20 20
YwtF 24.077 58.595 85.242 22 22 22
CoaD -.0972 12.775 18.182 34 24 28

Table 2: Vina Search Space Parameters (Angstroms).

4.3.5 Vina Parameters

We used Vina’s default parameters except for ex-
haustiveness, which we set to 6 instead of 8. This
allowed us to uniformly screen the ligands against
more receptor proteins in the time available and,
time permitting, subsequently screen a small num-
ber of high scoring ligands with exhaustiveness set
to at a higher level to make a final selection for in
vitro testing.

5 Results

Our BLAST results indicated that four B. sub-
tilis proteins with known 3D structure were highly
conserved; FtsZ and CoaD in both Gram positive
and Gram negative bacteria, Table 3; and YwtF
and RacE in Gram positive bacteria only, Table 4.
Complete tables, including information indicating
the existence of a known 3D structure for match-
ing proteins on other proteomes, may be found in
the Supplementary Material, Tables 17, 18 and 19.
We confirmed that two are listed as essential genes
for multiple species of bacteria, at the Database
of Essential Genes (DEG) web site [74; 73]. This
database listed 12 species for FtsZ, 6 species for
CoaD, 0 species for YwtF (function is unknown),
and only B. subtilis was listed for RacE. However,
our results suggest that all four may serve as vi-
able drug targets.

Our multiple sequence alignment results showed
that highly conserved regions of each protein’s 3D
structure was consistent with known or plausible
active sites. We also found that virtual screening
by Vina predicted binding sites for the NPD lig-
ands that were consistent with sites characterized
by high conservation, pocket topologies, and ex-
perimentally verified organic ligand binding sites
as recorded in the FtsZ (2VXY) and CoaD (106B)
pdb files from the Protein Data Bank; and the po-
sitions of high scoring ligands docked with YwtF
(3MEJ) and RacE (1ZUW) pdb files were consis-
tent with regions found by our sequence analysis
to be highly conserved.

5.1 BLAST

The following four B. subtilis proteins, FtsZ,
CoaD, YwtF, and RacE, have a known 3D struc-
ture and were found to be broadly conserved in
our BLAST results, Tables 3 and Table 4. While
this alone suggests that they might serve as suit-
able drug targets, FtsZ and CoaD are unique in
the B. subtilis proteome — as Table 6 shows, FtsZ
and CoaD had no matches with other proteins in
their own proteome and YwtF and RacE had only
one match other than with themselves. The com-
plete table may be found in the Supplementary
Material, Table 20.

5.1.1 Four proteins: FtsZ, CoaD, YwtF,

RacE

In this section we provide a concise summary of
our four proteins of interest, but provide some-
what more detail for YwtF and RacE because their
drug target potential may be less obvious. FtsZ
may be the most critical component of bacterial
cell division machinery [15]. It is an essential bac-
terial protein [33], guanosine triphosphatase, and
a homolog of mammalian beta-tubulin that poly-
merizes and assembles into a ring to initiate cell
division [20]. CoaD was found to be essential
for several species of bacteria, including Strepto-
coccus pneumoniae [67; 66; 65]. The structure
of CoaD was reported in [4]. YwtF: Although
the 3D structure for this protein has been deter-
mined its function is unknown [http://dx.doi.org/
10.2210/pdb3mej/pdb].  Specifically, this entry
describes a domain of unknown function that is
found in the predicted extracellular domain of
a number of putative membrane-bound proteins,
which includes protein psr: described as a peni-
cillin binding protein 5 (PDP-5) synthesis repres-
sor. Another putative membrane-bound protein is
Bacillus subtilis LytR. And a third protein, CpsA,
is described as a putative regulatory protein in-
volved in exocellular polysaccharide biosynthesis |
InterPro entry IPR004474 |. RacE: D-glutamate
is an essential building block of the peptidoglycan
layer in bacterial cell walls and can be synthesized
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from L-glutamate by glutamate racemase (RacE).
The structure of a complex of B. subtilis RacE
[33] with D-glutamate reveals that the glutamate
is buried in a deep pocket. This structure pro-
vides new insights into the RacE mechanism and
an explanation for the potency of a family of RacE
inhibitors [58].

5.2 MSA and active sites

Based on our BLAST results for B. subtilis ver-
sus 60 proteomes, we used MUSCLE to generate
MSAs using multiple sequences: 54 for FtsZ, 50
for CoaD, 57 for YwtF, and 38 for RacE. The
four proteins vary in length: FtsZ 382, CoaD 161,
YwtF 322, and RacE 272 amino acids; and various
numbers of gaps were inserted into their MSAs.
Figure 6 shows an overview of the MSA for FtsZ,
CoaD, YwtF and RacE respectively. These visual-
izations were generated by Jalview such that col-
ored bars appear only at positions where residues
are 100% conserved.

The MSA for FtsZ in Figure 6a shows the
greatest degree of conservation, and this is even
more apparent in Figure 7a where the conserva-
tion scores calculated by Jalview, ranging from 0
(lowest) to 11 (highest), have been mapped to the
surface of FtsZ as colors: gray {0..5}, blue {6,7},
yellow {8}, orange {9}, and red {10,11}. Perhaps
the most striking feature of this FtsZ 3D image is
the large highly conserved area, colored red, and
a deep pocket on the left side of Figure 7a. In
contrast, the opposite side, Figure 7b, shows less
conservation and lacks a similar pocket.

The MSA for CoaD in Figure 6b shows less
conservation than FtsZ and its highly conserved
residues are grouped closer together. Figure 7c
shows a more compact highly conserved region
(mostly red) and a substantial pocket; in stark
contrast, the opposite side, shown in Figure 7d,
shows very little conservation or concave areas.

The MSA for YwtF in Figure 6¢ shows much
less conservation than FtsZ. However, as Fig-
ure 8a shows, this protein’s highly conserved
residues map to one highly conserved surface re-
gion (mostly red) which lacks a substantial pocket
but nonetheless presents a region that probably
plays an important role. In contrast, the opposite
side, shown in Figure 8b, shows very little conser-
vation.

The MSA for RacE in Figure 6d appears to show
more conservation than the MSA for YwtF, but
this greater conservation is not evident from the
surface colors for RacE in Figures 8c and 8d. The
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implication is that many of RacE’s highly con-
served residues are located in the interior. This
was confirmed by rendering RacE as lines in Py-
MOL, shown in Figure 16 of the Supplementary
Material. Consequently, unlike the other three
proteins, RacE does not present an obvious tar-
get for docking ligands — where highly conserved
surface regions, especially those characterized by a
substantial pocket, are probably good drug targets
— but its highly conserved residues are internal,
the topology of RacE is complex and, given the
potency of a family of RacE inhibitors developed
as novel antibiotics [58], merits further investiga-
tion.

5.3 Virtual Screening

A concise illustration of our results from screening
~ 90,000 ligands against the four proteins identi-
fied from our BLAST results is shown in Figure
9. Scores were relatively consistent between pro-
teins, i.e., NPD ligands docked with FtsZ tended
to score the best (lowest binding energy as mea-
sure by kcal/mol), followed by CoaD, YwtF, and
RacE; Table 7. In addition, NPD ligands scored
consistently higher than the micro vendor ligands,
Table 23 of the Supplementary Material.

Docking scores indicate that FtsZ contains the
most promising drug target, while CoaD which has
a similar appearance (Figure 7c), also scores rela-
tively well. Figures 11a, 11b, 11c, and 11d show
the top scoring ligand for each protein docked with
FtsZ, CoaD, YwtF, and RacE respectively. We
noted that the top scoring ligands for FtsZ tend
to have a bend similar to the one shown in Figure
11a such that they conform closely to the contours
of the pocket, which is also a characteristic of high
scoring ligands for the other proteins. This is con-
sistent with other research, which has found that
in most cases the largest pocket/cavity is the ac-
tive site [39].

5.4 Validation

We validated our in silico results using against the
data contained in the Protein Data Bank pdb files
and ZINC mol2 ligand files.

(1) Highly conserved regions in FtsZ and CoaD
were compared with their known active sites.
We found that the locations of highly conserved
residues corresponded very closely to known ac-
tive sites.

(2) Although Vina’s accuracy was confirmed in
[8], we compared the predicted binding site of lig-



Proteomes Hits mean id. UniProt # GN 3D

54 54 55% P17865 ftsZ yes
51 70 50% P70965 murAA no
51 70 47% P19670 murAB no
51 61 46% 031751 uppS no
50 54 39% Q03523 murk no
49 49 46% 034797 coaD yes
48 49 46% P14192 glmU no
48 60 38% P40778 murC no
47 7 34% P31114 hepT no
46 80 39% P54383 1spA no
46 66 47% 031822 yngB no
46 64 51% Q05852 gtaB no
45 45 36% P96613 murF no
44 57 39% P96612 ddl no
43 46 37% Q06755 ispD no
42 43 37% Q03522 murD no
41 55 43% P54523 dzs no

Table 3: B. subtilis query proteins versus 60 Proteomes

Proteomes Hits mean id. UniProt # GN 3D

25 2% 63% P17865 fisZ  yes
25 25 51% P14192 glmU no
25 25 50% 034797 coaD  yes
25 34 48% 031751 uppS  no
24 27 41% Q03523 murE no
23 29 43% P96612 ddl no
21 24 47% P94556 racE  yes
21 58 34% QTWYT8 ywtF  yes
19 20 34% 005412 yrpC no
16 18 51% 031753 dzxr no
16 33 37% P39581 ditA yes
15 16 60% P54482 ispG no

Table 4: B. subtilis query proteins versus 25 Gram Positive Proteomes

1
o i U i Wil ol L L i

FtSZ CoaD

LI

et Ll ) PUTERRR T S AT PRIy 1 st R R RN R PR

(c) YwtF RacE

Figure 6: Multiple sequence alignments: columns are in color where residues are 100% conserved.
The FtsZ sequence shows the greatest degree of conservation.

ands similar to the organic FtsZ ligand, CIT, with the images in Figure 10 indicate, the organic lig-
CIT’s experimentally determined binding site. As and’s known position closely matches the position
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Proteomes Hits mean id. UniProt # GN 3D

25 % 47% P17865 fis?  yes
25 26 46% P70965 murdAA no
25 25 45% 031751 uppS no
25 26 42% P19670 murAB no
25 27 36% Q03523 murE  no
24 24 42% 034797 coaD yes
23 25 40% P14192 glmU no
23 43 3% P54383 1spA no
23 39 32% P31114 hepT no
23 34 32% P40778 murC no
22 22 56% Q06756 ispF no
22 28 42% P54523 drs no
22 22 33% P96613 murF no
21 27 46% Q05852 gtaB no
21 31 43% 031822 yngB no
21 29 36% P96612 ddl no
21 43 34% P38422 dacF no
21 22 32% Q03522 murD  no
20 20 36% Q06755 ispD no
19 20 3% P54473 ispH no
19 19 34% 005412 yrpC no
19 40 33% P35150 dacB no
18 18 41% 031753 dxr no
17 95 37% P96740 pgdS no

Table 5: B. subtilis query proteins versus 25 Gram Negative Proteomes

Proteomes Hits mean identity UniProt # GN 3D

1 1 100% P17865 ftsZ yes
1 1 100% 034797 coaD  yes
1 1 100% P39844 dacC  yes
1 1 100% P50740 fai yes
1 1 100% P39131 mnaA  yes
1 1 100% P27623 tagD  yes
1 2 66% 005412 yrpC no
1 2 66% P94556 racE  yes
1 3 59% P96499 yvhJ  no
1 3 50% Q02115 R no
1 3 58% QTWYT8 ywtF  yes

Table 6: Redundancy of 123 B. subtilis proteins in the B. subtilis Proteome. Using BLAST with an
E value of 0.1 and filtered with a sequence identity threshold of >= 30%.
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(c) CoaD front

(d) CoaD back

Figure 7: FtsZ and CoaD with surface colored by conservation score: gray {0..5}, blue {6,7}, yellow

{8}, orange {9}, red {10,11}.

Protein Name

FtsZ P17865 2VXY
CoaD 034797 106B
YwtF Q7TWYT78 3MEJ
RacE P94556 1ZUW

UniProt # pdbid Top Scoring Ligand Score kcal/mol

ZINC04236084 -12.10
ZINC03846570 -10.20
ZINC08791231 -9.10
ZINC03844349 -7.70

Table 7: Top scoring NPD ligands using predicted site

predicted in silico for a virtually identical ligand.

(3) We compared the docking scores of a set of
10777 NPD ligands (p0.4) when docked within a
search area centered on our predicted active sites
versus docking scores for the same set of ligands
in a search space of the same size but centered
on a poorly conserved region on the opposite side
of each protein. Although results for FtsZ and
CoaD were as expected — the ligands docked on the
"back” side did not score as well — ligands docked
on the "back” side of YwtF and CoaD scored bet-
ter, Table 8. This was quite interesting. However,
Figure 12c shows that the top scoring ligand for
YwtF in this case is docked deep in an elaborate
pocket characterized by some conservation (blue

={6,7} on the scale from 0 to 11), whereas the
“front” side of YwtF presents a large highly con-
served area, Figure 11c, lacks a substantial pocket.
In the case of RacE, Figure 12d shows the top scor-
ing ligand docked in a small pocket in a relatively
conserved area which, in hindsight, is not obvi-
ously a less likely binding site than the one shown
in Figurelld.
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(c) RacE front (d) RacE back

Figure 8: FtsZ and CoaD with surface colored by conservation score: gray {0..5}, blue {6,7}, yellow
{8}, orange {9}, red {10,11}.

receptor mean, mean, Mming MiINE MaT, MATy

FtsZ -8.24 -5.89 -11.90 -840 -3.40 -2.50
CoaD -6.97 -4.61  -9.60 -6.60 -2.80 -1.90
YwtF -6.41 -6.75 -9.00 -11.40 -2.60 -2.70
RacE -5.21 -5.64 -7.60 -8.30 -2.10 -2.60

Table 8: Docking Scores for NPD p0.4 ligands: search areas include predicted active site (a) versus
predicted inactive site (b).

LLELE

B mean

min

-12

-14

Figure 9: Docking scores in kcal/mol for NPD

. ) o (a) Modified ligand (blue)(b) ZINC1726452 ligand
ligands. A more negative value indicates a lower (red)

binding energy.

Figure 10: FtZ with organic ligand (green) in
known position versus docked ligands (a) and (b).
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(a) ZINC04236084 docked with FtsZ, score -12.1

(b) ZINC03846570 docked with CoaD, score -10.2

4 P |

(c) ZINC08791231 docked with YwtF, score -9.1

(d) ZINC04015296 docked with RacE, score -7.7

Figure 11: Top scoring NPD ligands (complete set) docked in search areas that include predicted

active sites.

6 Discussion

In this thesis we considered 123 genes associated
with bacterial cell wall biosynthesis and cell divi-
sion from the B. subtilis genome. From these genes
we used a comparative genomics approach to iden-
tify essential proteins in multiple bacterial species
because the proteins most conserved across species
are most likely to be essential for the survival of
more species of bacteria [3] and, therefore, good
potential drug targets [17; 56]. We found that the
conserved residues in each protein coincided with
either known actives sites, or sites where the best
scoring ligands docked with the lowest binding en-
ergy. However, while our results indicate that the
combination of very highly conserved residues and
a substantial pocket clearly indicate a potential
drug target, less favorable conservation scores and
surface topology indicate the need for further in-
vestigation and probably a larger search space for
the docking software.

While the images of proteins presented in this

paper may appear to be precisely colored accord-
ing to conservation and, therefore, functional im-
portance, we can only say that based on the data
and algorithms used, some surface regions are
probably more important than others. First, the
sequences used for MSA depended not only on the
set of input sequences but on BLAST (which uses
hueristics) and its parameters. Second, the MSAs
produced by MUSCLE may differ from those pro-
duced by other widely used algorithms and, of
course, all are probabilistic. Different MSAs may
yield differ conservation scores and different 3D
images. Third, blasting against a different set of
proteomes may also lead to different conservation
Fourth, the results from virtual screen-
ing depended on multiple factors including the
set of ligands and the search parameters used by
AutoDock Vina. Another cause for concern is that
the 3D structure of the vast majority of proteins is
not known, which means our investigation has in
fact been limited to a small minority of B. subtilis

scores.
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(a) ZINC12865513 docked with FtsZ, score -8.40

(b) ZINC02127995 docked with CoaD, score -6.60

(c) ZINC02161101 docked with YwtF, score -11.4

(d) ZINC12886695 docked with RacE, score -8.30

Figure 12: Top scoring NPD p0.4 ligands docked in search areas that include predicted inactive

sites (using 10777 ligands instead of ~ 90000).

proteins.

7 Future Work and Conclusion

The scope for future work includes many areas.
First, this work could be extended to consider the
3D structure of proteins similar to essential B. sub-
tilis proteins. Second, additional methods and re-
sources could be combined with ours to form an
ensemble with greater accuracy. Third, the data
analyzed in this paper should be amenable to ma-
chine learning techniques. For example, which fea-
tures of a chemical compound are the best pre-
dictors binding energy may depend on multiple
factors and the receptor protein, but this could
be learned from the data produced by our meth-
ods and data from online databases such as ZINC,
UniProt, PDB, and many others.

In conclusion, we found that the methods pre-
sented provide a principled and rational way to
reduce costs and manage complexity. Given an

extremely large number of possible protein lig-
and combinations, our results were used to de-
cide which proteins to target, which ligands to
purchase, and thereby prioritize in vitro experi-
ments designed to test compounds for antimicro-
bial properties.
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