Classification of Purkinje Cell Post Synaptic Current Events
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1. Introduction

The recording and analysis of synaptic currents provides an informative
measure of neuronal and circuit behavior, but recordings from the soma of
dissociated Purkinje cells contain an overlapping mixture of slow (gabaergic)
and fast (glutamatergic) events with highly variable kinetics. While
traditional template methods are somewhat effective for event detection and
classification, neural networks can be more accurate, providing more
Information about synaptic interactions and presynaptic NMDA receptors.

2. Purkinje cell synapses
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Fig 1. Purkinje cells receive excitatory and inhibitory inputs:

Climbing fibres (CF) indirectly make excitatory synapses @ with the Purkinje
cell (PC) soma, while molecular layer interneurons (MLI), such as basket cells,
make inhibitory synapses with the PC's soma. Parallel fibores (PF) make
excitatory synapses @ with the PC’s dendritic tree. Other components in this
figure include mossy fibres (MF), unipolar brush cells (UBC), granule cells
(GrC), golgi cells (GoC), and the Lugaro cells (LC). Image: (Gao et al., 2012).

3. Event Detection and Extraction

Post synaptic event detection was by threshold. 1. Data was filtered by a
bandpass filter built from a 2"d order Butterworth filter, and the MATLAB™
function filtfilt, which performs zero-phase digital filtering. 2. The event
detection threshold was set by visual inspection of the filtered data. 3. Event
times were Initially detected by threshold, then consolidated at local peak
times. 4a. Template method: mean squared error of template versus unfiltered
data at event time. 4b. Neural network method: extract peak aligned
waveform (-10 to +10 or 20 ms) and submit to a neural network classifier
already trained on ground truth examples.
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4. Template Method
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Fig 2. The dual exponential function was used to model the mean e
waveforms extracted from the PSC data. ol Tt s e s e

5. Neural Network Method
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Fig. 3: Neural networks are well suited to problems where the training
examples are taken from noisy, complex data. s0.2%
« This image is from the Deep Learning Toolbox™
* A neural network with a single hidden layer can model any continuous : rareer ciass
function if the hidden layer contains enough nodes.
* This network accepts input with 301 features per example.
* One hidden layer contains 10 neurons with sigmoidal transfer functions.
« The output layer calculates the posterior probability of the two classes.
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Neural network accuracy on 6 pairs of real data files using ground truth detection
times for event extraction (waveform length 20.1 ms). Recordings were taken after
the application of DNQX and bicuculline. Data was partitioned: training (70%),
validation (%15), test (15%). Accuracy was about 99%, 93%, and 100% respectively.

O. Discussion

The neural network method was easier to parameterise and had better classification
accuracy on synthetic than the template method. The NN also performed well on the
real data. However, the real event data was highly variable, with many very small
amplitude events, and not amenable to automatic threshold detection. Nonetheless,
neural networks are a promising method for this data, and it seems likely that they can
deal with event detection as well as event classification.

6. Synthetlc Data
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~1g 4: This synthetic data was generated by adding random values to the
Inter event intervals, event amplitudes, and decay time constants of each
slow and fast event. Consequently these events have highly variable kinetics
and may overlap in terms of shape and time (s).

May 2004.
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