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Introduction

* Purkinje cells are in the cerebellum.

* They receive excitatory and inhibitory inputs.

* Postsynaptic current is a mixture of events.
* Fast events.
* Slow events.

* Drugs can selectively block receptors.
 DNQX blocks AMPA receptors (fast events).
* Bicuculine blocks GABA, receptors (slow events).

e But drugs cause artifacts.
* Blocking one receptor type interferes with normal interactions.
 Example: where presynaptic receptors mediate retrograde feedback.

* The challenge is to unmix and classify events using computational methods.
* Fast event trains.
e Slow event trains.

* But first, some background about Purkinje cells and their connectivity.
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Purkinje cell synapses
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Post Synaptic Waveform Sorting

* Event detection

 Filter data if necessary.
 Amplitude threshold to get candidate waveforms.

* Feature extraction and visualisation
* Principal Components Analysis (PCA).
e K-means clustering using the squared Euclidean distance metric.
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* Compute mean waveform for each cluster and the plot event trains.
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Mean Waveforms and Event Trains

09921004.mat: (PCA) Evicted
. C1, n=44, pct=60.3%, Hz=0.63 . €2, n=29, pct=39.7%, Hz=0.41 . Waveforms
“éﬁ.s_-\/‘-—_ _-3,5_\/'" .a.}_s j (25 Std)
-1-:} 10 20 3-0 1-1ID 5{.‘ IE:.'} 70 1-:} 2'.'} :!-C- 4-:} 5«’.‘- EC- 70 1':} ’-..- 30 4-:} 5'.’.‘- EC- 70
. e cl ster 1Th %n MAD=0. us o me )
mr T Ur AL
A
| | | |
10 2 0 Cluster 2, Thr= 50 MAD=0.05 0 «
'C'_ ! k 11 1 } . ] 1 ! [ | |
ST H‘ \ IH | il
" 04l
0.6 ] | | | ] | ] |
10 20 30 40 50 80 70 80 a0
0 . Gumplex events?clusler 0, Thr= 5.0, MAD=0.05 . . .
B | |
<-05F “ } [ ‘
cC 4L
l | | | l | l |

10 20 30 40 50 60 ] 80 a0

1 time (s)

DNQX and NMDA at 37.45 seconds. 8



Build Template Libra Y. fit dual exponential function
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Next Steps

e Slide templates along old or new data to detect and classify events.
e Use synthetic data for testing.
* Do computational analysis of data sets in context of pharmacological data.

e Additional methods?

e Bayesian methods
* Exploit prior knowledge about the data.
* Machine learning

* Neural networks for pattern recognition.

* Learn from labelled examples
o D






Sorting: using K=3 and T=1
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Slow templates: used K=3 and T=1
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300 seconds, K=3, T=5
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CurrentX GUI and Parameters
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Data length (s)
366.15
Range
Start (s) 1

End (&) 300

[] FIR 50Hz stop

[] remove artifacts

[ Fiter data |bandpa... ~
Sampling Rate 10000
Freguency A 0.5
Frequency B 7ooo
Sort Chan 1

Save Load Defaults

o

% param.m, see also param_defaults.m

% FILTER

% p.fitter_order: usually 2 for Butterworth fiter

%% p.artifact_detect: number of MADs.

% p.artifact_extend: number of MADs (artifact extenszion to adjacent data points).
%

% DETECT

% p.threshold_intra: (MADs) event amplitude (intracellular).

%

%% p.min_width: (time steps) consecutive data points over amplitude threshold (event detection).
% p.refractory (ms) time period after event detection where events not possible
%

% EXTRACT

% p.extraction: 1 wav, 2 pca, or 3 none

Ut p.offzet!: (ms) before max amplitude (waveform extraction}.

% p.offset2: (ms) after max ampltude (waveform extraction).

% p.pc: number of wavelet features to extract (for clustering).

Ut p.percent: required percent of variance, PCA (for clustering).

%

% CLUSTER

% p.k: number of clusters for kmeang

% p.outlier: max std deviations of any wawe pt from centroid wave (eviction from cluster).
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